Computational & Technology Resources
an online resource for computational,
engineering & technology publications
Civil-Comp Proceedings
ISSN 1759-3433
CCP: 83
Edited by: B.H.V. Topping, G. Montero and R. Montenegro
Paper 137

Numerical Analysis of Welded Aluminium T-Stub Joints under Monotonic Loading

M. Brescia1, G. De Matteis2, A. Formisano1 and F.M. Mazzolani1

1Department of Structural Analysis and Design, University of Naples "Federico II", Italy
2PRICOS, Architectural Faculty, University "G. d'Annunzio" of Chieti/Pescara, Italy

Full Bibliographic Reference for this paper
M. Brescia, G. De Matteis, A. Formisano, F.M. Mazzolani, "Numerical Analysis of Welded Aluminium T-Stub Joints under Monotonic Loading", in B.H.V. Topping, G. Montero, R. Montenegro, (Editors), "Proceedings of the Eighth International Conference on Computational Structures Technology", Civil-Comp Press, Stirlingshire, UK, Paper 137, 2006. doi:10.4203/ccp.83.137
Keywords: T-stub, aluminium alloy, heat effected zone, finite element model, K method, Eurocode 9.

This paper deals with the numerical simulation of aluminium alloy T-stub joints subjected to monotonic tensile loads. The numerical analyses, developed by implementing a sophisticated finite element (FE) model by means of the non linear code ABAQUS [1] (see Figure 1), have been accurately calibrated on the basis of the results of a wide experimental programme carried out at the Department of Structural Analysis and Design of the University of Naples "Federico II" on twenty-six different specimens, which were connected among them or to a rigid steel support by means of aluminium or steel bolts [2]. In particular, four different geometries (by varying geometrical dimensions, plate thickness, number and location of the bolts), three aluminium alloys as base material and three types of bolts (including both aluminium and steel bolts) have been taken into consideration. Such parameters determine the modification of the connection response in terms of initial stiffness, ultimate strength and deformation capacity.
Figure 1: Basic components of the adopted finite element model.

The comparison with the available experimental results has shown the adequacy of the numerical model, which is able to reproduce correctly the mechanical response and reliability of the joint, as well as to provide a correct interpretation of the related collapse mechanism in all cases examined (see Figures 2 and 3).

Figure 2: T-sub type 1A1: experimental (a) and numerical (b) failure mechanisms and monitored points during the analysis (c).
Figure 3: Specimen type 1A1: (a) and (b) curves.

The experimental results obtained have also been compared in terms of the collapse load to the ones derived from the application of the analytical procedure provided in the final version of EC9 [3]. The comparison underlines that the codified method is significantly conservative and a reduction of the related scatter can be obtained through a more precise evaluation of the effective width of the equivalent continuous beam, by means of the results achieved through the proposed numerical model. Therefore, it has been demonstrated that, when the codified procedure is applied taking into account such an effect, the mean scatter reduces to about 5%.

Hibbitt, Karlsson, Sorensen, Inc., "ABAQUS/Standard", version 6.4, Patwtucket, RI, U.S.A., 2004.
De Matteis G., Mazzolani F.M., "Behaviour of welded aluminium T-stub connections: experimental analysis and interpretative models", Proc. of the ASCE Structures Congress 2006, St. Louis, Missouri, U.S.A., May 2006.
De Matteis G., Mandara A., Mazzolani F.M., "Design of aluminium T-stub joints: calibration of analytical methods", Proc. of the Third European Conference on Steel Structures, Coimbra (Portugal), Vol. II, 1017-1026, 19-20 Sept, 2002. doi:10.1061/40889(201)45

purchase the full-text of this paper (price £20)

go to the previous paper
go to the next paper
return to the table of contents
return to the book description