Computational & Technology Resources
an online resource for computational,
engineering & technology publications
Civil-Comp Proceedings
ISSN 1759-3433
CCP: 111
Edited by: P. Iványi, B.H.V. Topping and G. Várady
Paper 44

BIM-based Model Generation and High Performance Simulation of Soil-Structure Interaction in Mechanized Tunnelling

H.G. Bui1, A. Alsahly1, J. Ninić2 and G. Meschke1

1Institute for Structural Mechanics, Ruhr University Bochum, Germany
2Center for Structure Engineering and Informatics, The University of Nottingham, United Kingdom

Full Bibliographic Reference for this paper
H.G. Bui, A. Alsahly, J. Ninic, G. Meschke, "BIM-based Model Generation and High Performance Simulation of Soil-Structure Interaction in Mechanized Tunnelling", in P. Iványi, B.H.V. Topping, G. Várady, (Editors), "Proceedings of the Fifth International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering", Civil-Comp Press, Stirlingshire, UK, Paper 44, 2017. doi:10.4203/ccp.111.44
Keywords: mechanized tunnelling, parallel contact, block-preconditioning, BIM.

Mechanized tunneling is an established construction technology in particular in urban environments, which involves interactions between the tunnel boring machine (TBM), the ring-wise installed linings, the tail void grouting and the surrounding soil including the groundwater as well as existing buildings. Evidently, 3D computational simulations of the machine driven tunnel construction process requires time consuming preparation and excessive computing resources. In this work, a parallelization strategy is applied to perform large scale simulations of the advancement process in mechanized tunneling. To support the generation of realistic simulation models, the Building Information Modeling (BIM) concept is employed. In this approach, different simulation components in terms of geometrical representation, material modeling and process modeling are stored in the database, and can be selected on demand, depending on the objective of the analysis. In the highest modeling level, all components involved in the TBM advancement in urban environments, namely the soil, the tail-void grouting, the segmented lining, and the existing buildings are considered. The parallelization strategy employs the domain decomposition technique to decompose the large model into sub-domains. The contact between the TBM and the soil is resolved by using the surface-to-surface, so called mortar contact formulation. The spatial-temporal system is discretized using an LBB-compatible mixed formulation for space discretization and the generalized- method for temporal discretization, leading to a linear system of block structure. This system is then solved iteratively by Krylov subspace method and a block preconditioner to speed-up the convergence. Selected numerical benchmarks are presented to showcase the effectiveness of the employed parallelization strategy for mechanized tunneling using a BIM concept.

purchase the full-text of this paper (price £22)

go to the previous paper
go to the next paper
return to the table of contents
return to the book description