Computational & Technology Resources
an online resource for computational,
engineering & technology publications 

CivilComp Proceedings
ISSN 17593433 CCP: 83
PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STRUCTURES TECHNOLOGY Edited by: B.H.V. Topping, G. Montero and R. Montenegro
Paper 129
Limit Analysis of Reinforced Concrete Rectangular Plates with Free Edges I. Mura
Department of Structural Engineering, University of Cagliari, Italy I. Mura, "Limit Analysis of Reinforced Concrete Rectangular Plates with Free Edges", in B.H.V. Topping, G. Montero, R. Montenegro, (Editors), "Proceedings of the Eighth International Conference on Computational Structures Technology", CivilComp Press, Stirlingshire, UK, Paper 129, 2006. doi:10.4203/ccp.83.129
Keywords: plates, limit analysis, collapse load, rigidperfectly plastic media, reinforced concrete, orthotropic reinforcement.
Summary
The definition of the collapse load of a reinforced concrete (RC) plate requires the determination of the
solution of the upper bound (by applying the kinematic theorem) and that of the
lower bound (by applying the static theorem). The two solutions reveal the interval
within which we find the exact collapse load value. If the two solutions coincide, the
common value represents the exact collapse value (by the mixed theorem of Limit
analysis).
Application of the kinematic theorem normally facilitates the finding of the upper bound of the collapse load. Many results are to be found in the works of Johansen (for example, [1]) who was the first to elaborate the yieldline theory. This work was later continued by other authors (for example, [2,3]). On the contrary, research on the finding of lower bounds and consequently the application of the static theorem are less numerous and more episodic. In general, when automatic calculation methods are not employed (see for example [4]) it is necessary to use "intuition" in assigning a statistically admissible field of moments and from this to deduct the lower bound of the collapse load (see for example the solutions for the lower bound in [5,6,7,8,9,10,11]). In the works just cited, only [9] and [10] concern models of plates with free edges. The paucity of lower bound solutions is unfortunate because lower bound solutions furnish information on the distribution of bending and torsional moments throughout the plate and the reactions on the supporting system, and ways of minimizing the reinforcement, including bar cutoff points, can be found [11]. In this note we address the problem of defining the collapse load for a RC rectangular plate clamped at one edge and supported at the two opposite corners of the boundary under a uniformly distributed load. The most general conditions of the ratio between the edges and the orthotropism of the reinforcement are considered. In accordance with the fundamental theorems of limit analysis of rigidperfectly plastic media, herein the formulation used to find the lower and upper bounds of the collapse load for reinforced concrete plates is discussed.. It will be shown by means of a comparison of the upper and lower bounds that in most cases the collapse load is found exactly, and in the other cases the lower bound agrees very favourably with the corresponding upper bound (and the collapse load is defined with sufficient precision for technical purposes). The specified moment fields could be used in determining the required distribution of positive and negative reinforcement. References
purchase the fulltext of this paper (price £20)
go to the previous paper 
