Computational & Technology Resources
an online resource for computational,
engineering & technology publications 

CivilComp Proceedings
ISSN 17593433 CCP: 77
PROCEEDINGS OF THE NINTH INTERNATIONAL CONFERENCE ON CIVIL AND STRUCTURAL ENGINEERING COMPUTING Edited by: B.H.V. Topping
Paper 94
High Performance Computing for High Speed Railways L. Argandoña+, E. Arias*, J. Benet$, F. Cuartero* and T. Rojo*
+Computer Science Research Institute of Albacete, Spain
L. Argandoña, E. Arias, J. Benet, F. Cuartero, T. Rojo, "High Performance Computing for High Speed Railways", in B.H.V. Topping, (Editor), "Proceedings of the Ninth International Conference on Civil and Structural Engineering Computing", CivilComp Press, Stirlingshire, UK, Paper 94, 2003. doi:10.4203/ccp.77.94
Keywords: high performance computing, interaction pantograph/catenary, static equilibrium equation, sparse linear algebra libraries.
Summary
During the recent last years, passengers transportation by railway
has experimented a considerable increasing in some European
countries (Germany, France, Spain, ...). For that reason, reaching
higher velocities in railways has become a very important target.
In that scenario, the pantograph/catenary system, with its dynamic
behaviour, becomes a crucial component (see [1,3,4]),
because at high speed it is very difficult to guarantee the
permanent contact of pantograph head and contact wire. Moreover,
it becames more difficult when noise and wear are considered.
In order to obtain an adequate behaviour in the pantograph/catenary system, it is necessary the existence of adequate conditions in the line, and this requires, among other aspects, a very precise mechanical calculus. Recent investigations have focused on dynamical behaviour by dynamical simulations in order to allow a better interaction of the pantograph and the catenary [4,2]; in this paper we will follow a more traditional approach, focusing in the catenary, modeled, as usual, by a set of coupled strings. In fact, the best conditions in which the pantograph would obtain electric energy from the line are when the contact wire is parallel to the ground, Thus, an important problem is to determine the exact length of the droppers in order to allow the contact wire to acquire the correct shape. So, our objective is the development of a technique which allows us to implement a high precision calculation algorithm, and thus to develop a software tool to design high quality catenaries. In this paper, a High Performance Computing Algorithm has been developed to obtain the solution of the static equilibrium equation of the pantograph/catenary system after an exhaustive study of the tradictionl mechanical approach based on a set of coupled strings. This approach is based on the folowing features:
Sequential implementations of the resulting algorithm has been carried out by using standard libraries as BLAS [9] and SPARSKIT [10], in order to achieve good performance, portability, robutness and efficiency. A reduced execution time and low memory requirements allow to deal with more realistics (bigger) problems and, of course, to better solve the dynamic problem. References
purchase the fulltext of this paper (price £20)
go to the previous paper 
