
Abstract

A new probabilistic safety assessment method applicable to conventional and high

speed railway lines is presented. The main idea consists of reproducing the railway

line items which are relevant to safety by means of a Bayesian network as an alterna-

tive to more limited event and fault tree structures. The model evaluates the probability

of incidents associated with the circulation of trains along the lines with special con-

sideration of human errors. To this end, all the line relevant elements, such as light

and speed limit signals, rolling stock failures, falling materials, slope slides in cut-

tings and embankments, tunnel or viaduct entries or exits, automatic train protection

systems and other elements are reproduced with a special consideration of human be-

havior and human error. Since driver’s attention plays a crucial role, its evolution and

changes with driving time and due to other factors, such as seeing light signals or re-

ceiving acoustic signals are taken into account. The model updates the driver attention

level and evaluates the probability of accident associated with the different elements

encountered along the line. A continuously increasing risk graph with continuous and

sudden changes is obtained indicating where actions must be taken to improve safety.

This avoids waste of time and money by concentrating on the items most critical to

safety. Finally, some illustrative examples are used to point out the models relevance.

Keywords: Bayesian networks, human error, driver’s attention, conditional probabil-

ities, automatic train protection systems.

1 Introduction

As recognized in other areas of knowledge, such as in the nuclear and aerospace fields,

probabilistic safety assessments are also necessary in railway lines. Among the exist-

ing models used to assess risks and to perform a safety analysis, one of the most rele-
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vant and well known is the Safety Risk Model (SRM) proposed by the RSSB (Railway

Safety Standard Board). Apart from other important contributions, they quantify the

risk associated with some hazardous events leading to injuries or fatalities. In par-

ticular, the SRM provides a list of 110 hazardous events to evaluate the global risk

measured in terms of collective, individual and societal components. In 2002, [1] es-

timated a frequency of 138 equivalent fatalities per year for the case of passengers,

staff and members of the public under the existing control measures. One of the main

contributions of the SRM is the identification of a wide range of failure modes and

associated main causes and consequences of potential accidents that arise in regular

and non-regular railway operation and maintenance. This information must be con-

sidered as a very rich piece of information that is required when performing standard

risk assessments.

In many countries safety analyses reduce to qualitative tests or procedures in which

events or sequences of events leading to relevant incidents are not identified adequately

and the corresponding probabilities of occurrence are not quantified properly. Proba-

bilistic safety analyses (PSA), which are standard procedures in other areas (aeronau-

tical and nuclear industries), have not been incorporated yet as regular procedures to

assess railway lines safety and are not mandatory in many countries (see [2]). Though

probabilistic risk assessment methods, already developed in other areas of knowledge,

have been used in the assessment of railway safety (see [3, 4]), they have not been

adapted to the case of railway lines.

As it occurs in many other areas of engineering, human error is the most important

factor to be considered in any PSA. On the other hand, quantification of human error

probabilities is one of the most difficult problems, which can be solved only with the

help of miscellaneous groups of professionals (operators, conductors, railway design-

ers, PSA experts, statisticians, etc.) (see, for example, [5], [6] or [7]).

In this paper we pay special attention to the driver tiredness and attention and how

it changes along the line as a function of the driving time, the elements encountered

along the line and the help of automatic train protection systems (ATP).

Probabilistic safety analysis of railway lines implies a huge amount of combina-

tions of events (see, for example, [8], [9]). Though fault trees structures (see [10] or

[11]) are the most common probabilistic models used in PSA, they have important lim-

itations, specially to consider common causes. Since Bayesian networks have not this

limitation, they compete with advantage with fault trees structures as an appropriate

tool able to reproduce the random variables involved in the problem. Bayesian net-

works have no limit in practice to reproduce any statistical or probabilistic dependence

structure of the set of variables (see [12]). On the other hand, complex Bayesian net-

work models have been already proposed for probabilistic safety analysis of railway

systems by [13] and [14], but with a different orientation. This previous experience is

a guarantee when facing the case of railways.

This paper proposes a modern railway line design with a PRA included as an alter-

native to classical design in which safe operations are guaranteed, but no probabilistic

analysis is performed.
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In probabilistic safety analysis (PSA) human errors are incorporated and all se-

quences of events leading to undesired incidents are looked for and, more important,

their probabilities of occurrence are estimated in order to guarantee that they are be-

low a small enough threshold value. In this context, Bayesian networks provide an

adequate tool to reproduce the random variables and their dependencies not only in

their qualitative but in their quantitative aspects.

One of the most difficult steps in Bayesian network construction is the estimation

of its high number of parameters. This is a crucial and complicated step that can be

done only by a group of experts. To this end, the works [1], [15] and [16], provide

important real railway data and a complete statistical analysis of the railway European

accidents that occurred during the period 1980-2009, become very relevant.

People working in probabilistic assessment of nuclear power plants, railway lines

or highways know about this problem. When undesired events are relatively frequent

it is very easy to use standard statistical methods to estimate probabilities of occur-

rence, however, when events are unfrequent, the associated confidence intervals for

the parameters are too wide and we can only have an idea on the order of magni-

tude of the probabilities of occurrence. There is still an even worse case, in which

we need to provide frequencies of occurrence when no previous information exists.

In this cases, groups of experts are required to reach a consensus about the required

very small frequencies. The long experience in nuclear power plants indicates that in

these cases some published tables explaining the type of events being involved and

the recommended frequencies for the calculations must be used. Note that more than

precise values in these extreme cases we need only an order of magnitude of the risks

involved and an idea of how these events can be avoided.

Another important source of information for parameter estimation are the spe-

cialized committees with responsibility for investigating railway accidents and their

causes and elaborating the corresponding reports and corrections. They exist in many

different countries and provide an extremely valuable information for safety analysis.

One of the main sources of motivation for this paper comes from some recent rail-

way accidents which occurred in Spain, in the USA and in France, where excesses

of the speed limit in curves and lack of adequate ATP systems were the main causes.

An extra motivation comes from the low cost and maintenance alternate double-single

track (ADST) lines that we suggested for low demand areas (see [17], [18], [19] or

[20]), which suggest a detailed risk analysis must be done, due to the existence of high

speed single tracks.

In this paper a PRA methodology is proposed, which uses Bayesian networks (BN)

to represent the stochastic structure of the set of all random variables involved in the

problem. The following sections describe the set of variables and the links represent-

ing direct dependencies among variables, which define the BN qualitative structure,

and how the associated conditional probability tables, which reproduce the BN quanti-

tative structure, are defined. Some illustrative examples are also provided. Some uses

of these models to highways and roads can be seen in [21], [22] or [23].

This paper is based upon [24], but the current paper includes the following addi-
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tional research:

1. We discuss in detail how the safety of level crossings can be analyzed in Bayesian

networks based on probabilistic safety assessments.

2. We discuss how to incorporate the safety of buffer stops at the end stations in

probabilistic safety analyses.

3. We analyze the role of automatic train protection (ATP) systems and how their

effect can be limited when other non-protected failures can occur with a large

probability.

4. We illustrate the method with new examples.

We finally add that the methodology proposed in this paper is relevant to the prob-

abilistic assessment of railway lines. We also indicate that Bayesian networks out-

perform clearly to event and fault trees because of the possibility of incorporating

common causes without the need of duplications.

2 Variables and items involved in the model

In this section the set of variables used in the model are described (see more details in

[19]).

The first step in modelling railway line safety consists of identifying the variables

that are relevant to the problem being reproduced. From a safety point of view, the

following variables can be identified as relevant:

• A: Incident. Since possible incidents can occur at different locations, different

instances of this variable type are used at any location where incidents are pos-

sible. We assume that they can take the following values: none, minor, medium

and severe.

• S: Automatic Train Protection (ATP) System. This variable reproduces the su-

pervising system operating at the considered location of the line. Since in some

countries the ATP systems can change along the line, we assume that this vari-

able takes the values:“ERTMS”, “ERTMS-ASFA”, “ASFA-dig”, “ASFA-AV”,

“ASFA-Conv”, “ASFA-anal”, “SR” (staff responsible).

• AS: Light signal decision. At any location where a light signal exists a decision

must be taken. So, we consider a variable with possible values: correct, error I

(signal at stop announcement), error II (signal at red). These values refer to the

particular signal being studied.

• at: Driver’s tiredness. At any location where a driver’s decision is required

we include a driver’s tiredness variable, which has an important contribution to

human error and increases with driving time. To simplify, we have assumed that

this increase is a deterministic function.
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• M: Driver’s attention. Driver’s attention continuously changes with travel time

due to the influence of different elements. Thus, we need to reproduce these

changes along the line. To this end, driver’s attention variables are used at dif-

ferent locations with three possible values: distracted, that is, the driver lacks

the necessary attention to react when an action is required and no action is ob-

served, attentive, that is, the driver reacts adequately to the required actions but

with a small probability of error, and alert, that is, the driver always makes the

correct decision.

• DA: Driver’s decision at signal. At signal locations where decision are ex-

pected, we include a driver’s decision variable with possible values: correct,

error (incorrect action of the driver). This variable refers only to the driver’s

intention that can be correct or incorrect.

• DE: Driver’s decision on speed control. At some locations the train speed must

be controlled by the driver. To control the corresponding driver’s decision, a

speed variable is used with values: correct, error I (speed remains unchanged

when it should be changed), error II (selected speed is not the required speed).

This variable refers to the actual driver’s action.

• DS: Driver’s decision made at a speed limit signal. It is a similar variable but

used for speed limits signals and with values: correct or error I (fail to reduce

speed). It refers to the actual driver’s action.

• Inf: Infrastructure. This variable reproduces the infrastructure state (rails, sleep-

ers, ballast, plate, maintenance standards, etc.), which has an important role on

possible undesired infrastructure failures. Its damage levels are: none, minor,

medium and severe.

• RS: Rolling Stock. It refers to the rolling stock conditions and includes the

damage levels: none, minor, medium and severe. Note that incidents due to

rolling stock failures can take place.

• V: Speed. At different locations, but mainly where speeds must be controlled,

we use a speed variable with values in a discrete list V of values, which in this

paper is simplified to a set V starting from 0 and ending with 280 km/hour with

increments of 20 km/hour. However, if at given locations, some particular values

not included in this list are of interest, they will replace the closest values in the

list.

• SS: Light signal state. Where a light signal is present, we use a variable with

values: free, stop announcement or stop. This variable reproduces the signal

state when the train passes the signal.

• T: Terrain. This variable is used to consider the risk associated with falling

stones on the infrastructure or slope slidings in cuttings and embankments and
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takes values: stable, small, medium and high instability. Terrain failures can

lead to undesired uncertain incidents, so that they must be reproduced.

• TF: Technical failure. It refers to the possibility of a technical failure: yes or

no. For example, a brake failure.

The railway to be analyzed contains a set of items that are encountered sequentially

when travelling the line. They include: warning, light and speed limit signals, tunnels

and viaducts, switches, over or under pass structures, etc. Each item generates a subset

of variables with their corresponding dependencies, that is, Bayesian sub-networks.

Similarly, the segments between signals also generate sub-networks, as indicated in

Figure 1, where these two sets of sub-networks have been differentiated. All of them

were adequately connected to generate the global Bayesian network of the whole line.

WARNING 

SIGNAL

SEGMENT WITHOUT SIGNAL

WARNING 

SIGNAL

WARNING 

SIGNAL

SEGMENT WITHOUT SIGNAL

SEGMENT WITHOUT SIGNAL

SEGMENT WITHOUT SIGNAL

SEGMENT WITHOUT SIGNAL

SEGMENT WITHOUT SIGNAL

SEGMENT WITHOUT SIGNAL

LIGHT SIGNAL

LIGHT SIGNAL

SPEED LIMIT SIGNAL

ANNOUNCEMENT

SPEED LIMIT SIGNAL

SPEED LIMIT

SIGNAL
LIGHT SIGNAL

WARNING SIGNAL

SPEED LIMIT SIGNAL

ANNOUNCEMENT

SEGMENT WITHOUT

 SIGNAL

Sub-Networks

Driver’s 

Attention

Distracted
Attentive

Alert

Supervisor

 System

ATP

ERTMS
SR

...

Speed
0

20

350
...

Rolling 

Stock

No incident
Minor incident

Severe incident
Medium incident

Terrain
Stable

Minor instability

Severer instability
Medium instability

Speed 

response

Correct
Error I
Error II

Action 

response
Correct

Error

Event
Correct

Mnor error
Sevr error

Signal 

State

Free
Stop Announc

Stop

Infrastructure
No incident

Minor incident

Severe incident
Medium incident

Variables

Incident Minor incident

Severe incident
Medium incident

No incident

Figure 1: Proposed Bayesian network. Illustration of the Bayesian model showing

the subnetworks associated with the different items and segments without

signals

The set of all 36 possible combinations of node parents and sons that have been con-

sidered in our model are shown in Table 1. This implies that 36 different conditional

probability tables need to be defined. In fact we propose 36 closed form formulas for

these probabilities.

The following subsections describe some details of the different sub-network com-

ponents.

50 E. Castillo, et al. – Int J Railway Tech, 7(4), 45-69, 2018



2.1 Conditional probability tables

In this section we explain how some of the required conditional probability tables are

defined.

2.1.1 M nodes: Driver’s attention

The driver’s attention M node is connected only to the previous M node if it exists.

This means that its states depend on the M node previous nodes states. Their de-

pendencies are modelled by means of a Markov model (see Figure 2) in which the

changes from attentive, distracted and alert states are reproduced depending on the lo-

cation of the corresponding nodes along the line. The sequence of signals, the acoustic

alerts received in the cabin, the landscape, etc. have a strong influence on the driver’s

attention, which must be modelled.

Figure 2 illustrates how the driver’s attention oscillates among the three states:

alert, attentive and distracted, and the probabilities of any of the possible transitions.
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Figure 2: Markov model illustrating the transitions among different attention levels

showing the transition probabilities for the cases of segments without signals

and when a signal is visualized

2.2 Level crossing sub-Bayesian network

In this section we describe in some detail how the level crossings are incorporated to

the probabilistic safety analysis.

There are three different types of level crossings:

1. Protected with or without crossing gate: In this case the train can circulate at a

maximum speed of 155 Km/h.
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Node Parents Node Parents

A M, S, V, RS RS -

A M, S, V, RS, T, Inf RS M, S, SS, V

A SS, M, S, V, RS RS M, S, V

A SS, M, S, V, RS, T, Inf RS SS, M, S, V

A V RS V, RS, V

A V, AS S -

AS S, V, DA, FT, SS S M

DA M S S

DE M S SS, M

DS S, V, DA, FT T -

FT - V -

Inf V, V V M, S

M - V M, S, SS

M M V V, DE, DS, M, S

M SS V V, DE, DS, M, S, SS

SS - V V, DE, M, S

SS M, S V V, DE, M, S, SS

SS SS V V, DE, SS, AS, M, S

Table 1: Set of all possible combinations of node parents and sons

2. Protected with or without crossing gate but with an announced problem: Since

there is a safety problem at the level crossing, the train must reduce its speed

such that stop at the level crossing can be possible.

3. Unprotected: In this case the train must reduce its speed such that stop at the

level crossing is possible in case of any obstruction.

Each level crossing type is announced by the presence of its distinctive signal.

Figure 3 shows the subnetwork associated with the level crossing network, which is

formed by a level crossing announcement (left green subnetwork) and at least a level

crossing (right green subnetwork).

The level crossing announcement network is shown in Figure 3 and the associated

conditional probabilities are given below. They differ only in the controlled speed

to which the driver must attain that, as previously mentioned, depends on the level

crossing type.

The level crossing subnetwork is modelled as two parts:

• Level crossing announcement signal. The first considers the visualization of the

level crossing announcement signal, and consequently the driver’s attention M
is modified and a driver’s decision DE is activated.

• Level crossing itself. In the second part the incident, node A is analyzed.
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Figure 3: Set of variables involved in the level crossing subnetwork

2.2.1 Level crossing announcement signal

This is described on the left hand side of Figure 3.

We need to define the following conditional probability tables P (DE|M), P (DA|
M) and P (DS|Vp, DA, S, TF ).

Since the DE node with possible a values {correct, error I, error II} has as its

single parent a driver attention node with possible b values {distracted, attentive,
alert}, the conditional probabilities for this node are given by the closed formula:

P (DE = a|M = b) =
(
δa,1 δa,2 δa,3

)⎛⎝ 0 1− (1− τa)at 1
1 θ(1− τa)at 0
0 (1− θ)(1− τa)at 0

⎞
⎠

⎛
⎝ δb,1

δb,2
δb,3

⎞
⎠
(1)

where δa,b are the Kronecker’s deltas, τa is the probability of a correct decision when

the driver is attentive and tiredness is null (at = 1), θ and 1 − θ are the probabilities

of making errors I and II, respectively, once an error has been made by the driver, and

at > 1 is the driver’s tiredness reduction factor, which is defined as:

at = exp
(
δt2

)
, t ≥ 0 (2)

where δ is a parameter, which in the presented examples is assumed to be δ = 0.02.

This means that any probability of making right decisions by the driver must be re-

duced by dividing this value by the corresponding reduction factor at.
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Since the DA node with possible values {correct, incorrect} has as its single par-

ent a driver attention node with possible values {distracted, attentive, alert} (see

Figure 3), the associated conditional probability p(DE = a|M = b) becomes:

p(DA = a|M = b) =
(
δa,1 δa,2

)( 0 1− (1− τa)at 1
1 (1− τa)at 0

)⎛
⎝ δb,1

δb,2
δb,3

⎞
⎠ (3)

The node DS with two possible values (correct and error I) refers to the final de-

cision after the driver’s signal decision, the action of the ATP system and a possible

technical failure. This node has four parents V , DA, S and TF (see Figure 3).

To calculate the values pa,b,c,d,e of the conditional probability

pa,b,c,d,e = P (DS = a|Va = b,DA = c, S = d, TF = e)

we define first a speed dependent row Qs(b) matrix:

Qs(b) =
(
v(b) < vlim vlim < (v(b) ≤ vmax v(b) > vmax)

)
(4)

where vlim and vmax are the speed limit and the maximum speed that allows the speed

limit to be attained, respectively, and whose three elements qsi (b) refer to the cases:

(a) the speed limit is already satisfied at the signal location, (b) the speed limit is not

satisfied but attainable, and (c) the speed limit is unattainable, respectively.

For this node DS we have the following conditional probability:

pa,b,c,d,e = δa,1p1bcde + δa,2(1− p1bcde) (5)

where the probability of a correct decision is

p1bcde = (1− δe,1)q
s
2(b)(1−ρ(d)δc,2) + qs1(b) (6)

where the three factors in the first term refer to the case of a correct decision DS

due to no technical failure (factor (1− δe,1)), attainable speed limit (factor qs2(b)) and

both correct decision DA and erroneous decision DA but corrected by the supervisor

(factor (1−ρ(d)δc,2)). The second term refers to the case of a correct decision because

the speed limits are already satisfied.

2.2.2 Level crossing itself

This is described on the right hand side of Figure 3, which shows the accident node A
and its parent V in a level crossing.

The conditional probability of the incident node A given the speed node V is given

by

P (A = a|V = b) = δa,1(1− �FN(vref/2,vref/4)(v(b)))

+δa,2�(FN(vref/2,vref/4)(v(b))− FN(vref ,vref/4)(v(b)))

+δa,3�(FN(vref ,vref/4)(v(b))− FN(3vref/2,vref/4)(v(b)))

+δa,4�FN(3vref/2,vref/4)(v(b))

(7)
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where vref is the reference speed and � is the probability of a obstruction to occur at

the level crossing, which both depend on the indicated above type of level crossing.

In Figure 4 the Formula (7) is illustrated, where cdfs of normal random variables

have been used to get the accident level but without any probabilistic or statistic in-

terpretation. The vertical line at 53 km/h indicates how the probability associated

with the none, minor, medium and severe accidents can be calculated as the length, of

different segments in each of the indicated areas. Obviously, they add up to one.

In Formula (7) the four lines correspond to the probabilities of the incident node to

take values: none, minor, medium and severe, given the value of node V . The case of

A = none takes place in all cases but those in which there is an obstruction, with prob-

ability ρ, and this is minor, medium or severe, with probability FN(vref/2,vref/4)(v(b)),
that is, with a probability 1− �FN(vref/2,vref/4)(v(b)), as indicated.

The case of A = minor takes place if and only if there is an obstruction, with prob-

ability ρ, and this is minor, with probability FN(vref/2,vref/4)(v(b))−FN(vref ,vref/4)(v(b)),
that is, with a probability �(FN(vref/2,vref/4)(v(b))−FN(vref ,vref/4)(v(b))), as indicated.

Similarly, the terms in lines three and four correspond to the probabilities of an

obstruction and this to be medium or severe.
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Figure 4: Illustration of the probabilities associated with different accident levels as a

function of the speed at the level crossing

2.3 The end station Bayesian subnetwork

This subsection is used to consider incidents at the end station consisting in a collision

with the end buffer stops. Figure 5 shows the end station Bayesian subnetwork. There

are two Bayesian subnetworks, the one corresponding to the end station announcement
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signal and the one associated with the buffer stop itself, where the incident can take

place.

Mp

V

A

DE

DA

TF

AL

M

S
V

RS

T

Inf

A A

M

St
Madrid 

Pta Atocha

S

Figure 5: End station sub-Bayesian network

2.3.1 The buffer stop announcement Bayesian subnetwork

This subnetwork is represented on the left hand side of Figure 5 and contains nodes M ,

DE, DA, TF and AL. The corresponding conditional probabilities are very similar

to those described for the level crossing announcement signal.

2.3.2 The buffer stop Bayesian subnetwork

This Bayesian subnetwork, represented on the right hand side of Figure 5, contains

a unique node A with one parent V variable and its conditional probability can be

written as:

P (A = a|V = b) = δa,1q
s
1(b) + g(a, b)qs2(b), (8)

where

g(a, b) = δa,1(1− FN(vminor,σ)(v(b)))

+δa,2(FN(vminor,σ)(v(b))− FN(vmedium,σ)(v(b)))

+δa,3(FN(vmedium,σ)(v(b))− FN(vsevere,σ(v(b)))

+δa,4FN(vsevere,σ)(v(b)), (9)
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where vminor,vmedium,vsevere are the speeds that produce a minor, medium and severe

incident, respectively, at a stop station, and v(b) is the speed associated with speed

level b. We consider several types of stations (I intermediate or T terminal station),

and σ is the deviation of the cumulative normal distribution.

Figure 6 illustrates the probabilities associated with a collision with buffer stop for

the different accident levels as a function of the speed at the end station.
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Figure 6: Illustration of the probabilities associated with a collision with buffer stop

for the different accident levels as a function of the speed at the end station

3 Network partition

In this section we show how the complexity of the calculations can be reduced by

partitioning the networks in small parts.

A real line generates a Bayesian network model with a very high number of vari-

ables. To illustrate, the case of the Palencia-Santander line in [14] with a little more

than 200 km, contains 7820 variables, a high enough number leading to memory and

cpu problems if conventional Bayesian network packages are used.

In order to solve this important problem, [14] presents a powerful technique that al-

lows us to reduce memory and cpu requirements. Its main idea consists in partitioning

the Bayesian network in several small subnetworks without altering the quantitative

dependence structure in the initial Bayesian network. One example is shown in Fig-

ure 7 where the Bayesian network associated with the set of signals indicated in the

lower part of the figure is given. The upper plot shows how it can be partitioned into

five subnetworks. Note that, in order to keep the dependence structure four and five
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artificial nodes (duplicated from their previous subnetworks) have been added to the

second to fifth subnetworks, respectively, but no node is added to the first one.
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Figure 7: Illustration of how a Bayesian network can be partitioned into a sequence of

Bayesian subnetworks to obtain the marginal probabilities (forward process)

The basic idea behind this technique consists of using sets of separators (subset

of nodes) such that the conditional probability of the set of posterior nodes becomes

independent on the set of previous nodes given the separator subset (see [12]). To

facilitate the calculations, some added artificial links are used to convert the separator

into a clique. This technique significantly reduces the computation time, and more

important, the associated complexity becomes linear in the number of nodes.

Fortunately, and thanks to this technique of partitioning the line in small pieces,

without loosing any precision there is no limit in the line scale, because the complexity

is linear in the line length. This is one of the main advantages of the proposed method.

4 Examples of applications

To facilitate the understanding of the proposed methodology, some illustrative exam-

ples are included in this section. More precisely, we give three basic examples, which

have been carefully selected to clarify some of the concepts developed in previous

sections.
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4.1 Nested permanent and temporal speed limit signals example

In this example we present a case of nested permanent and temporal speed limit signals

with the aim of illustrating: (a) the capacity of the Bayesian network to detect design

errors, (b) the role of ATP systems in improving the safety of a railway line, and (c)

how possible design failures not covered by ATP systems can diminish the relevance

of these ATP systems.

The example is described in Figure 8 (second plot from the top) and consists of:

1. A permanent speed limit set of signals, at locations 388.500 (speed limit an-

nouncement), 389.800 (mandatory signal) and 390.680 (end of speed limit). It

corresponds to the initial line design.

2. A temporal speed limit set of signals, at locations 388.550 (speed limit an-

nouncement), 390.350 (mandatory signal) and 390.700 (end of speed limit). It

corresponds to some temporal changes in the line.

3. A tunnel located between locations 389.600 and 389.980.

4. A viaduct located between locations 389.990 and 390.200.

5. Two blackspots (possible rock cutting failures close to the track) at locations

390.400 and 390.605.

6. A light signal at location 389.500.

7. An end of speed limit signal at 389.020 and a temporal speed limit announce-

ment at 389.400. It appears that the temporal speed limit (30 km/h) at 388.550
was changed to 60km/h, but the corresponding mandatory signal at 390.350 was

not changed from 30 km/h to 60 km/h.

In the top plot of Figure 8 the Bayesian network graph associated with the items

above described is shown. The direct dependencies among the different variables

are shown providing a clear idea of the qualitative structure of the multidimensional

random variable and the role played by each variable.

The input supplied to the computer program for performing the PRA of the nested

permanent and temporal speed limit signals example is:

Trip = {{’Start’, 297.0},...
{’AnnouncementP’, 388.50, 0, 80}, ...
{’AnnouncementT’, 388.55, 0, 30}, ...
{’SignalFT’, 389.02, 0, 30,’To be removed’}, ...
{’AnnouncementT’, 389.4, 0, 60,’To be removed’}, ...
{’SignalC’, 389.500}, ...
{’TunnelIn’, 389.600, 0, ’Tunnel’}, ...
{’SignalP’, 389.800, 0, 80}, ...
{’TunnelOut’, 389.980, 0, ’Tunnel’}, ...
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Figure 8: Nested permanent and temporal speed limit signals example
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{’ViaductIn’, 389.990, 0}, ...
{’ViaductOut’, 390.200, 0}, ...
{’SignalT’, 390.350, 0, 30,’Sin baliza’}, ...
{’Blackspot’, 390.4,3},...
{’Blackspot’, 390.605,2},...
{’SignalFP’, 390.680, 0, 80,’Añadida’}, ...
{’SignalFT’, 390.70, 0, 30}, ...
};

We note that, apart from this information, the values of the model parameters must

be given too. To this end, the participation of a group of people and specialists is

required so that the parameter values reflect the real behavior of the driver and the

line.

The computer program: (a) builds the Bayesian subnetworks, (b) evaluates the

expected number of severe incidents, and (c) provides a sorted list, such as the one

indicated in Table 2, where the most dangerous items in the line for the cases of SR,

ASFA and ERTMS can be identified and corrected if it is necessary.

Severe Incident Frequency
item item name PK Staff Resp. ASFA ERTMS

Case11 (With signals and blackspot errors)
12 SignalT 390.350 0.044 0.044 0.044

13 Blackspot 390.400 4.75e-09 4.75e-09 4.75e-09

14 Blackspot 390.605 1.92e-09 1.92e-09 1.92e-09

Case12 (With blackspot errors)
12 SignalT 390.350 1.41e-08 1.65e-09 1.4e-11

13 Blackspot 390.400 2.81e-09 2.81e-09 2.81e-09

14 Blackspot 390.605 1.92e-09 1.92e-09 1.92e-09

Case13 (With corrected errors)
12 SignalT 390.350 1.41e-08 1.65e-09 1.4e-11

Table 2: Critical list: List of items of Case1 (ERTMS) with the corresponding PK,

accident nodes and probabilities (local and cumulated)

This computer program has been written by some of the authors of this paper in

Matlab. It uses the BNT software for dealing with Bayesian networks, and automati-

cally writes the code for the JavaBayes software (written in Java) in order to perform

a double check of the results.

The program uses a specially designed user interface that facilitates the railway

line representation, and generates automatically the input data and a report with all

the plots and tables of frequencies of incidents sorted by importance. The plots and

tables shown in this paper come from this report.

The third plot in Figure 8 shows the cumulative expected value of having a severe

incident when travelling the line and passing the different items with a clear indication
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of where the most safety relevant items are and how these expected values (probabil-

ities) are affected by the ATP systems. In our case, all three ATP situations (staff

responsible (SR), and the ASFA and ERTMS systems) point to the mandatory speed

limit signal location as the responsible for a high expected value (probability or fre-

quency) (0.044) of a severe incident but lead to the same frequency because this is due

to an erroneous design placement of the set of signals, which is not controlled by ATP

systems. The reason for such a high value is due to the fact that a speed limit signal of

60 km /h is announced when the real one corresponds to 30 km/h and there is a high

chance of not having enough time to reduce the speed.

In the fourth plot from the top the two previous erroneous signals, located at

389.020 and 389.400 have been removed. It can be seen that this correction produces

the expected and desired effects, with a significant reduction of expected values (be-

low 1.93e − 08) in the frequency of a severe incident. We note that the ATP systems

reduce this frequency to 6.97e−09 and 5.18e−09 for ASFA and ERTMS, respectively.

It is interesting to indicate that the effect of the ATP is much more reduced than

expected because of the presence of two blackspots at locations 390.400 and 390.605.

If a repair of the rock environment is done, as shown in the last two plots in Figure

8, the beneficial effects of the ATP are magnified. This is a clear indication of the

fact that safety improvements must be addressed first to the items causing the highest

probabilities.

4.2 End station buffer stop example

In this example we show an end station buffer stop example in which an inappropriate

location of an end of speed limit signal appears to decrease safety.

The example is shown in Figure 9 (second plot from the top) and consists of:

1. A permanent speed limit set of signals, at locations 84.538 (speed limit an-

nouncement), 87.273 (mandatory signal) and 89.915 (end of speed limit). It

corresponds to the initial line design.

2. Two light signals at locations 86.600 (advanced signal) and 88.953.

3. A final station signal at location 93.600.

4. An end of the line at location 94.600.

In the top plot of Figure 9 the Bayesian network graph associated with the items

above described is shown, where the direct dependencies among the different variables

are shown providing a clear idea of the qualitative structure of the multidimensional

random variable and the role played by each variable.

The third plot in Figure 9 shows the cumulative expected value of having a severe

incident when travelling the line and passing the different items with a clear indication

of where the most safety relevant items are and how these expected values (probabil-

ities) are affected by the ATP systems. In our case, all three ATP situations (staff
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Figure 9: End station buffer stop example

responsible (SR), and the ASFA and ERTMS systems) point to the mandatory speed

limit signal location as the responsible for a rather high expected value (probability

or frequency) (0.000749) of a severe incident but lead to the same frequency because

this is due to an erroneous placement of the end of speed limit signal, which is not

controlled by ATP systems. The reason for such a high value is due to the fact that
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when seeing an end of speed limit signal the driver is invited to increase the speed and

this is not indicated here because of the end station proximity.

In the fourth plot from the top the end of speed limit signal located at 89.915
has been removed. It can be seen that this correction produces the expected and de-

sired effects, with a significative reduction of severe incident expected values (below

5.48e−09) in the frequency of a severe incident. We note that the ATP systems reduce

this frequency to 4.85e− 09 and 2.86e− 10 for ASFA and ERTMS, respectively.

It is interesting to indicate that the effect of the ATP in this case is limited because

of the possibility of an error at location 87.273, where the mandatory speed limit signal

is located.

We finally note that frequencies below 10e− 09 are recognized by the RSSB (Rail

Safety and Standards Board) as a very low frequency below which we should not be

concerned.

4.3 Level crossing example

In this final example the safety associated with a level crossing is analyzed. The

example is described in Figure 10 (second plot from the top) and consists of:

1. A tunnel located between locations 2.835 and 3.185.

2. A level crossing announcement signal located at 10.150.

3. A level crossing located at 12.000.

4. A viaduct located between locations 21.150 and 21.850.

In the top plot of Figure 10 the Bayesian network graph associated with the items

above described is shown. The direct dependencies among the different variables

are shown providing a clear idea of the qualitative structure of the multidimensional

random variable and the role played by each variable.

The third plot in Figure 10 shows the cumulative expected value of having a severe

incident when travelling the line and passing the different items with a clear indication

of where the most safety relevant items are and how these expected values (probabili-

ties) are affected by the level crossing type. In our case, all three ATP situations (staff

responsible (SR), and the ASFA and ERTMS systems) provide very similar results.

The results point to the free or unprotected level crossing as the most dangerous

ones, with frequencies of severe incidents that can be up to more than 6 times for

unprotected level crossings when compared with protected ones.

In addition, it can be seen that the frequencies of severe incidents associated with

tunnels and viaducts are much smaller than those associated with level crossings.

As indicated, the parameter values of the model must be estimated based on ex-

isting data, the opinion of experts and mainly by validation. Our experience reflects

that when erroneous values (very high or very low) are selected, the resulting number
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Figure 10: Level crossing example

of expected corresponding events has no sense (too high or too low) and you can im-

mediately correct them. In fact we have used this methodology to reach reasonable

estimates for some parameters related to very unusual events.

4.4 Real cases

The examples in the previous section were small illustrative examples that facilitate

the understanding of how the proposed model works. However, this methodology has

also been applied to several real lines including the Palencia-Santander, the Vitoria-

Zaragoza and the Pamplona Castejón lines in Spain and the Dublin-Cork in Ireland,

involving several thousands of variables. Unfortunately, due to confidentiality rea-

sons, we cannot provide specific details. However, we can indicate that in the sorted

list of the most risky elements found in our analysis, some events and sequences of
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events were identified that in our opinion would be hardly identified by other means.

In the opinion of independent railway experts the identification and the correspond-

ing quantification of failure probabilities of all events can be considered as relevant

findings with respect to safety of the analyzed railway lines.

When the proposed method was used to evaluate the Santiago accident, causing 80

casualties, it was able to detect the need of a correction at the accident location, that

almost surely could have avoided the accident.

4.5 Final comments

First, the partitioning technique is not an approximate but an exact method to calcu-

late probabilities in the whole Bayesian network. Thus, with sufficient precision, the

results associated with using or not the partition technique must be the same. How-

ever, due to the reduction in complexity, the results could be more precise with the

partitioning technique.

Second, the complexity associated with the use of the partitioning technique is

linear in the length of the line. In fact, this is possible because the railway line is

linear itself, but this is normally not exploited by standard methods used in Bayesian

networks, as can be demonstrated using standard software packages.

Finally, we have used this method in several real lines, and have had no problem

at all with the length of the lines. We have experimentally proved that CPU time

increases linearly with the line length. Even though we have analyzed long lines with

our computer program (not optimized for CPU time) the calculations never reached

30 minutes.

5 Conclusions

The following conclusions can be drawn from the above analysis and considerations:

1. Bayesian networks permit the reproduction of the railway line structure and to

quantify the probabilities of undesired events. The Bayesian network structure

is obtained in a very natural way by simply identifying and reproducing all

elements that are encountered when travelling the line and that jeopardize safety.

2. As it has been shown in this paper, the required conditional probability tables of

the son variables given the parent variables can be obtained in closed form. This,

apart from permitting a simpler sensitivity analysis, facilitates the Bayesian net-

work construction.

3. The proposed method allows us to integrate human errors, which are demon-

strated crucial in railway safety, with other variables in the model. In particu-

lar, the driver’s tiredness and attention variables and decision variables, where
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different types of errors can be included. This permits the evaluation of the

associated probabilities of occurrence and their influence on other variables.

4. Thanks to the proposed partitioning technique, Bayesian networks associated

with large railway lines can be partitioned in small networks. This leads to

an important complexity reduction. More precisely, the resulting complexity

increases linearly (instead of non-linearly) with the number of items in the

line. Otherwise, the cpu times required to solve real problems can become pro-

hibitive.

5. The examples given in this paper show that the highest risk locations can be eas-

ily identified, so that any corrections can be directly addressed to the adequate

items with important savings in costs.

6. Application of the proposed methodology to the case of real lines (not given in

the paper) has shown that interesting sequences of failures can be identified and

their probabilities of occurrence evaluated. Once corrections are introduced, use

of the model permits guaranteeing that the line satisfies the required safety level.
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