Computational Science, Engineering and Technology Series: 39

Computer Analysis and Design of Masonry Structures

Computational Science, Engineering and Technology Series:

New Trends in Seismic Design of Structures *Edited by: N.D. Lagaros, Y. Tsompanakis and M. Papadrakakis*

 Tall Buildings: Design Advances for Construction

 Edited by: J.W. Bull

Computational Methods for Engineering Technology *Edited by: B.H.V. Topping and P. Iványi*

Numerical Methods for Acoustics Problems *Edited by: F. Magoulès*

Computational Mechanics using High Performance Computing *Edited by: B.H.V. Topping*

Saxe-Coburg Publications:

Multiscale Hierarchical Modeling of Hydrating Concrete V. Šmilauer Finite Element Analysis in Geotechnical Design M. Šejnoha Programming Distributed Finite Element Analysis: An Object Oriented Approach R.I. Mackie Object Oriented Methods and Finite Element Analysis R.I. Mackie

Domain Decomposition Methods for Distributed Computing *J. Kruis*

Computer Aided Design of Cable-Membrane Structures *B.H.V. Topping and P. Iványi*

Computer Analysis and Design of Masonry Structures

Edited by J.W. Bull

© Saxe-Coburg Publications, Kippen, Stirling, Scotland

published 2017 by **Saxe-Coburg Publications** Civil-Comp Ltd, Dun Eaglais, Station Brae Kippen, Stirlingshire, FK8 3DY, Scotland

Saxe-Coburg Publications is an imprint of Civil-Comp Ltd

Computational Science, Engineering and Technology Series: 39 ISSN 1759-3158 ISBN: 978-1-874672-44-9

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

Printed in Great Britain by Bell & Bain Ltd, Glasgow

Contents

Pre	face			vii		
1	Frictional Contact Analysis of Masonry Bridges, FRP Reinforcement and Estimation of Collapse					
	G.A. Drosopoulos, G.E. Stavroulakis and C.V. Massalas					
	1.1	1.1 Introduction				
	1.2	Principl	es of the Unreinforced Contact-Friction Model	5		
		1.2.1	The Unilateral Contact	5		
		1.2.2	Frictional Modelling	6		
		1.2.3	Formulation and Solution of the Unilateral Contact-			
			Friction Problem	7		
		1.2.4	Solvability of the Problem and Onset of Collapse	9		
	1.3	Compre	essive Failure of the Arch	11		
	1.4	Description of the Classical Heyman's Collapse Mechanism				
	1.5	The Proposed Method of FRP-based Reinforcement of Stone Arch				
		Bridges		14		
		1.5.1	Failure Modes of the Reinforced Arch obtained by			
			Experiments	14		
		1.5.2	Description of the Proposed Model with the			
			Reinforcement	14		
		1.5.3	Details of the Finite Element Models	15 18		
	1.6 Numerical Results of Unreinforced Arches					
		1.6.1	The Arch without the Fill	18		
		1.6.2	Influence of the Backfill	19 22		
	1.7 Application on the Reinforced Arch					
		1.7.1	FRP Attached to the Whole Length of the Extrados	22		
		1.7.2	FRP attached to the Whole Length of the Intrados	23		
		1.7.3	FRP Partially Attached both to the Intrados and the			
			Extrados of the Arch	24		
	1.8	Conclus	sions	26		
2	Modelling the Seismic Behaviour of Industrial Masonry Chimneys					
	F.J. Pallarés, S. Ivorra, L. Pallarés and J.M. Adam					
	2.1	Objective				
	2.2	Introduction				

		2.2.1	History		32
		2.2.2	Shape		33
		2.2.3	Structural Calculati	ons	35
	2.3	Materials and Construction			36
		2.3.1	Construction Mater	ials	36
		2.3.2	Construction Proce	38	36
	2.4	Experin	ental Tests		36
		2.4.1	Preliminary Consid	erations	36
		2.4.2	Tests		38
		2.4.3	Test Results		39
	2.5	.5 Numerical Modelling			41
		2.5.1	Type of Model		41
		2.5.2	Commercial Softwa	ire	42
		2.5.3	Constitutive Behavi	our and Yield Criteria	42
		2.5.4	Finite Elements and	l Solution	45
		2.5.5	Numerical Results		46
	2.6	Strengtl	ening Masonry Chim	neys using Fibre-Reinforced	
		Polyme			48
		2.6.1	Introduction		48
		2.6.2	FRP Modelling		48
			2.6.2.1 Assum	ptions	48
			2.6.2.2 Finite	Elements	48
			2.6.2.3 Model	ling	49
	2.7	Conclus	ions		49
3	Num	erical Mo	lelling of the Dynami	c Behaviour of Masonry	
	Structures				
	M. Lı	ucchesi, C.	Padovani, G. Pasquin	elli, B. Pintucchi and N. Zani	
	3.1	Introduction			55
	3.2	The Dy	The Dynamic Problem		58
		3.2.1	Three-dimensional	bodies	59
		3.2.2	One-dimensional st		64
	3.3	Exampl	es		70
		3.3.1	The masonry tower		71
		3.3.2	The masonry arch		88
	3.4	Conclus	ions		94
4	Wide	Spaced R	einforced Masonry S	hear Walls	99
		-	N.G. Shrive, A.W. Pag		
	4.1	Introdu	Introduction		
	4.2	Masonr	Shear Walls		100
		4.2.1	Unreinforced Maso	nry Shear Walls	100
			4.2.1.1 FE Mc	dels of URM walls	101
		4.2.2	Reinforced Masonr	y Shear Walls	102
			4.2.2.1 Tall Sh	ear Walls	104

			4.2.2.2	Squat Shear Walls	105
			4.2.2.3	FE Models for Reinforced Masonry	106
	4.3	Explicit	Finite Elem	ent Model for Masonry Shear Walls	108
		4.3.1	Material N	Models for Wide Spaced Reinforced Masonry	109
			4.3.1.1	Material Model for Unreinforced Masonry	110
			4.3.1.2	Material Model for Grouted Core	114
			4.3.1.3	Material Model for Steel Reinforcement	115
	4.4	Calibrati	on of the Ex	xplicit Finite Element Model	116
		4.4.1		ntal Investigation	116
		4.4.2	Comparis	on of Experimental and Finite Element	
			Results		117
			4.4.2.1	Load-Displacement Response	117
			4.4.2.2	Failure Mode	118
		4.4.3	Sensitivity	y Analysis	120
	4.5	Conclusi	ions		123
5	Struct	ural Char	acterizatio	n of Brick Chimneys	127
		i and D. S		°	
	5.1	Introduc	tion		127
	5.2	Chimney	ys in Tokona	ime	128
	5.3	Material	Tests		130
	5.4	Dynamic	c Test		132
	5.5	Dynamic	c Identificati	on	132
		5.5.1	ARMAV '	Technique	133
		5.5.2	ERA Tech	nique	133
	5.6	Results of	of Dynamic	Identification	134
	5.7	Numeric	al Model U	pdating	135
		5.7.1	Theoretica	al Background	135
		5.7.2	Weight M	atrix and Definition of Updating Parameters	137
		5.7.3	Finite Ele	ment Model	138
		5.7.4	Results of	Model Updating	138
	5.8		ollapse Test		141
	5.9		on-linear Ar	•	143
		5.9.1	Numerica		143
		5.9.2	Material N		144
		5.9.3		Static Non-linear Analysis	146
	5.10	Seismic		e of Brick Chimneys	147
		5.10.1	Pushover	•	148
		5.10.2		Static Non-linear (Pushover) Analysis	150
	5.11	Conclud	ing Remark	S	151
6	Concr	ete Block	Masonry I	Prisms under Compressive Loads: Testing	
		odelling	·	• 0	157
	M.A. F	Ramalho a	nd A. Talier	cio	
	6.1	Introduc	tion		157

6.2	Experin	Experimental Program		
	6.2.1	Units and Mortar	160	
	6.2.2	Displacement Measurement	160	
	6.2.3	Block Characterization	161	
	6.2.4	Prisms	162	
6.3	A Dama	age Model for Quasi-Brittle Materials	163	
	6.3.1	Outline of the Model	164	
	6.3.2	Non-Local Damage Model	166	
6.4	Numeri	cal Analysis and Results	168	
	6.4.1	Damage Parameters	168	
		6.4.1.1 Damage Parameters for Blocks	169	
		6.4.1.2 Damage Parameters for Mortar	170	
	6.4.2	Analysis of Prisms	170	
		6.4.2.1 Finite Element Model	170	
		6.4.2.2 Results for the Prisms	170	
6.5	Conclus	sions and Future Perspectives	175	
Non-	Linear He	eat Transfer Analysis of the Performance of Light		
		w Brick Walls by the Finite Element Method	181	
		z, P.J. Garcia-Nieto, J.L. Suarez Sierra,	101	
		banal, A.L. Martinez-Luengas and J. Dominguez-Hernande	z	
7.1	Introdu		182	
	7.1.1	Heat: Basic Definitions	182	
	7.1.2	Light Concrete Material and Thermal Insulation	183	
	7.1.3	Energy Savings in Buildings and CTE Code	184	
7.2	Mathematical Model of Heat Equation: Basic Equations of Heat			
	Transfe	* *	185	
	7.2.1	Energy Balance Equation	185	
	7.2.2	Rate Equations	185	
	7.2.3	Governing Differential Equation for Heat Conduction		
		in Three-Dimensional Bodies	186	
	7.2.4	Boundary and Initial Conditions	188	
	7.2.5	Variational or Weak Formulation of the Problem	188	
	7.2.6	Galerkin Finite Element Approach	189	
	7.2.7	Heat Transfer Problems with Radiation	193	
7.3		nental Procedures	194	
	7.3.1	Light Concrete Thermal Conductivity and Code		
		Comparison	194	
	7.3.2	Full-Scale Experiments	195	
7.4		cal Simulation Method by the FEM	200	
	7.4.1	Geometry	200	
	7.4.2	Finite Elements used	202	
	7.4.3	Numerical Validation	203	
	7.4.4	Two-Dimensional Finite Element Models and Results	205	
	7.4.5	Three-Dimensional Finite Element Models and Results	209	

7

	7.5	Discuss 7.5.1	sion of Numerical and Experimental Results Numerical FEM Results versus Experimental Full-Scale	215		
		7.5.2	Comparison Two-Dimensional versus Three-Dimensional FEM Results	215 217		
	7.6	Conclus		217		
8	а ъл:	ana Maah	anical Madel for the Limit Analysis of Dunning Band			
0			anical Model for the Limit Analysis of Running Bond lications and Validation for In- and Out-of-Plane Loa-			
		tructures		223		
	G. Mi	G. Milani and P.B. Lourenço				
	8.1	Introduction 22				
	8.2	Homog	Homogenisation Theory: Basic Assumptions 2			
	8.3	-	gid-Plastic Case: In- and Out-of-Plane Homogenised			
		Failure	Surfaces	227		
	8.4	Three-I	Dimensional Kinematic Finite Element Limit Analysis:			
		Basic A	ssumptions	231		
	8.5		Structural Level: Failure Loads Prediction of Two-Dimensional			
			ree-Dimensional Masonry Structures	235		
		8.5.1	Deep Beam Test	235		
		8.5.2	Shear wall	237		
		8.5.3	Out-of-plane loads: Tests at the University of Plymouth	241		
		8.5.4	Entire Buildings Subjected to Horizontal Forces: A			
			Case Study in Italy	246		
	8.6	Conclus	sions	250		
9	Seism	nic Resista	ance Evaluation of an Unreinforced Brick Masonry			
			nulating Earthquake Vibrations through Contained			
			Explosions: A Unique Case Study	255		
	A. Qa	isar				
	9.1	Introdu	ction	256		
	9.2	Descrip	tion of the Material and the Geometry of the Test Building	257		
		9.2.1	Material	257		
		9.2.2	Geometry of the Building	259		
	9.3	Explosi	ion Tests	259		
		9.3.1	Testing Methodology	259		
		9.3.2	Materials of Explosion	261		
		9.3.3	Explosion Scheme 1	263		
		9.3.4	Explosion Scheme 2	263		
		9.3.5	Explosion Scheme 3	266		
	9.4	Finite Element Analysis				
	9.5	Conclusions				
	9.6	Future Recommendations				

10	Analysis and Design of Membrane Retrofit Concrete Masonry Walls				
	for Blast Loads				
	L.G. Moradi and J.S. Davidson				
	10.1 Introduction and Background				
	10.2	281			
		10.2.1 Unreinforced Concrete Masonry Wall	283		
		10.2.2 Bonded Membrane Retrofit Concrete Masonry Wall	287		
		10.2.3 Arching Action of a Bonded Membrane Retrofit			
		Concrete Masonry Wall	290		
		10.2.4 Resistance Function Development for Unbonded			
		Membrane Retrofit Concrete Masonry Walls	296		
	10.3	Effect of Windows and Doors	298		
	10.4	Response Model Development	300		
		10.4.1 Single-Degree-of-Freedom System	300		
		10.4.2 Analysis Results of the SDOF System	303		
	10.5	Wall Reaction Forces	303		
	10.6	Summary			
11	Struct	tural and Reliability Modeling of Masonry Walls subjected	to		
	Blast Loads				
	C. Ean	non			
	11.1	Introduction	309		
	11.2	Finite Element Modeling of Masonry Walls subjected to Blasts	310		
	11.3	Load Model			
	11.4	Resistance Model			
	11.5	Reliability Analysis			
		11.5.1 Reliability based on Wall Failure	324		
		11.5.2 Reliability Based on Critical Debris Velocity	330		
	11.6	Conclusions	332		
Inde	X		339		

Preface

Masonry is the term generally used to describe calcium silicate, clay, concrete and stone brick or block units. Masonry construction is widely used for buildings up to four storeys in height and occasionally for over five stories, but then usually as cladding, although it is often used in loadbearing situations and for single structures such as bridges, chimneys and the like.

Masonry can be used for unreinforced masonry structures, reinforced masonry structures or as confined masonry. Unreinforced masonry is used in low seismicity activity areas and for building up to four storeys in height. Reinforced masonry is used in taller buildings while confined masonry is used as panels which act as stiffening to frames to resist lateral loads in compression.

Although there are many design codes on masonry design, in order to maintain competitiveness, ongoing research is required to improve the design of masonry structures. Research is needed into the enhancement of material properties, the use of numerical modelling to improve design accuracy and robustness in resisting seismic forces. This data can then be used to improve the design rules for unreinforced masonry, reinforced masonry and for confined masonry. Considerable research has been carried out into the nonlinear design of masonry, its dynamic and seismic behaviour, masonry testing, strengthening of existing masonry structures, thermal efficiency, resistance to blast loading and even the use of unreinforced masonry in seismic areas. Accordingly, this book is written by chapter authors who have expert experience that covers many of the areas where research is needed and where their work can be incorporated into design codes that will enhance the safe design of masonry structures.

Chapter 1 considers heritage stone arch bridges which carry light traffic. While researchers have examined the nonlinear behaviour of these structures, few have considered their reinforcement and restoration. This chapter studies the nonlinear and limit analysis and a method of reinforcement with FRP materials. A method of reinforcement by using FRP is proposed. Numerical examples are included.

Chapter 2 describes the numerical modelling of industrial masonry chimneys under seismic conditions. In situ experimental results are included to calibrate the numerical model; and alternative strengthening arrangements using FRP are discussed and conclusions drawn.

Chapter 3 compares two numerical approaches for modelling the dynamic behaviour of masonry structures. The constitutive equation of masonry-like materials with bounded compressive strength and the dynamic problem for both three-dimensional bodies and one-dimensional structures are considered. The results stressed the importance of using accurate constitutive models for masonry.

Chapter 4 reviews design methods for single-leaf wide-spaced reinforced masonry walls, as this wall system is popular in regions dominated by cyclonic wind. Research findings with respect to the in-plane shear response are reviewed and a method that predicts global behaviour of the walling system is presented. Experimental validation of the model is also presented.

In Chapter 5 the understanding of the dynamic and static analysis of existing structures is considered essential. To assist in this purpose material tests, dynamic tests and static collapse tests of existing brick chimneys were carried out. From the experimental tests, numerical models were prepared and the numerical results used to evaluate the seismic performance of the chimneys.

Chapter 6 compares the results of experimental and numerical analyses of concrete block prisms under compression loads, with the object of simulating the nonlinear mechanical response of the prisms using a numerical damage model. An experimental program determined the parameters for the numerical model.

Chapter 7 shows how the thermal efficiency of multi-holed brick walls can be improved by determining the best brick from the thermal point of view. Experimental tests are presented to validate the numerical analysis procedure and to analyse the material conductivity for different compositions of the light concrete. To select the appropriate wall design, detailed instructions are included.

Chapter 8 reviews a simple micro-mechanical model for the homogenised limit analysis of masonry where a linear optimization problem is derived to recover the homogenised failure surface of the brickwork. Relevant structural examples are compared with competing approaches.

Chapter 9 considers the lateral load resistance behaviour for unreinforced masonry buildings subjected to simulated seismic ground motions. It was shown that low-rise brick masonry buildings could resist such ground motions if minimum standards of material, geometry and interconnectivity of the structural elements were maintained.

Chapter 10 presents formulations for the resistance and blast load response of membrane retrofit unreinforced concrete masonry walls. These formulations can be used for the design of high-risk structures to enhance the level of protection provided by new buildings and for the retrofitting of similar walls in existing buildings.

Chapter 11 describes the development and use of a procedure to assess the reliability of concrete masonry unit walls subjected to personnel-delivered blast loads. Reliability, over load frequency-of-occurrence times, is estimated for grouted and un-grouted walls for design blast load levels in terms of wall failure and occupant injury.

I would like to thank the chapter authors for the high quality of their work and also the publishers for their diligence in ensuring the high quality production of this book.

> John W. Bull Eur Ing, BSc, PhD, DSc, CEng, FICE, FIStructE, FCIHT, FIHE, FIWSc Professor and Head of Civil Engineering, Brunel University Uxbridge, London, England