Computational Science, Engineering and Technology Series: 34

Patterns for
Parallel Programming
on GPUs

Computational Science, Engineering and Technology Series

Substructuring Techniques and Domain Decomposition Methods
Edited by: F. Magoulés

Soft Computing in Civil and Structural Engineering
Edited by: B.H.V. Topping and Y. Tsompanakis

Trends in Civil and Structural Engineering Computing
Edited by: B.H.V. Topping, L.F. Costa Neves and R.C. Barros

Parallel, Distributed and Grid Computing for Engineering
Edited by: B.H.V. Topping and P. Ivdnyi

Trends in Engineering Computational Technology
Edited by: M. Papadrakakis and B.H.V. Topping

Trends in Computational Structures Technology
Edited by: B.H.V. Topping and M. Papadrakakis

Computational Methods for Acoustics Problems
Edited by: F. Magoulés

Mesh Partitioning Techniques and Domain Decomposition Methods
Edited by: F. Magoulés

Computational Mechanics using High Performance Computing
Edited by: B.H.V. Topping

High Performance Computing for Computational Mechanics
Edited by: B.H.V. Topping, L. Limmer

Parallel and Distributed Processing for Computational Mechanics:
Systems and Tools
Edited by: B.H.V. Topping

Saxe-Coburg Publications:

Programming Distributed Finite Element Analysis:
An Object Oriented Approach
R.I. Mackie

Object Oriented Methods and Finite Element Analysis
R.I. Mackie

Domain Decomposition Methods for Distributed Computing
J. Kruis

Computer Aided Design of Cable-Membrane Structures
B.H.V. Topping and P. Ivdnyi

Patterns for
Parallel Programming
on GPUs

Edited by
F. Magoules

W

i)
SAXE-COBURG
PUBLICATIONS

© Saxe-Coburg Publications, Kippen, Stirling, Scotland

published 2014 by

Saxe-Coburg Publications

Civil-Comp Ltd, Dun Eaglais, Station Brae
Kippen, Stirlingshire, FK8 3DY, Scotland

Saxe-Coburg Publications is an imprint of Civil-Comp Ltd

Computational Science, Engineering and Technology Series: 34
ISSN 1759-3158
ISBN 978-1-874672-57-9

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Publisher’s production & editorial team: Steven Miller, Jane Tabor, Rosemary Brodie
Printed in Great Britain by Bell & Bain Ltd, Glasgow

Contents

Foreword by G. Colin de Verdiere xi
Preface by F. Magoules xiii
1 Evaluation of State-of-the-Art Parallelizing Compilers Generating CUDA

Code for Heterogeneous CPU/GPU Computing 1
J.C. Juega, S. Verdoolaege, A. Cohen, J.I. Gémez, C. Tenllado and F. Catthoor

1.1 Introduction 2

1.2 RelatedWork 3

1.2.1 Performance Modeling and Tuning 3

1.2.2 Programming Models 3

1.2.3 Polyhedral Compilation 4

1.2.4 Automatic Vectorization 5

1.3 CUDA Programming Model 6

1.4 Polyhedral Model Overview 7

1.5 Tools for GPU Code Generation 8

1.6 Experimental Results 10

1.6.1 Matrix Multiply (gemm) 11

1.6.2 Other Benchmarks 15

1.6.2.1 bicg 20

1.6.2.2 jacobi-2d 22

1.623 mvt. 23

1.7 LessonsLearned 24

2 Data Size and Data Type Dynamic GPU Code Generation 31
H.-P. Charles and V. Lomiiller

2.1 Introduction 31

2.1.1 H4HITEA2 Project 33

2.1.2 Scilab Interpretor 33

2.2 Code Generation for Accelerators 34

2.2.1 CUDA Programming Language 34

222 CUDAandPTX 34

223 OpenCL
224 UsingLibraries
2.2.4.1 Linear AlgebraDomain

2.2.42 Message Passing Domain

2.24.3 Graphical Libraries

2244 OtherDomains.

2.3 deGoal Code Generator Generator
2.3.1 Neutral but Rich Instruction Set

2.3.2 Assembly and Expressions Interleaving

233 SmallExample 0L
2.3.4 Instructions Meta Information and Fast Code Generation . .

235 CurrentStatus

2.4 Experimentations e
2.4.1 Experimental Compilette
24.1.1 Reference Implementation.

24.12 deGoal Implementation

2.4.1.3 Hardware and Software Setup

2414 Results Lo

2.4.2 Scilab Integration

25 RelatedWorks oo oL
251 HMPP.
252 Scilab

253 LLVM. . ..
2.5.3.1 GCD Grand Central Dispatch

2532 NvidiaCompiler

254 Ocelot.

255 Scipy ...

2.6 Conclusion L

High Level GPGPU Programming with Parallel Skeletons
M. Bourgoin, E. Chailloux and J.-L. Lamotte

3.1 Introduction
32 OCamland SPOC
321 OCaml
3.2.2 GPGPU Programming
323 SPOC
324 ASmallExample oL
3.3 Design Patterns and Skeletons
33.1 Example
332 Benefits Lo
3.4 Skeletons Composition
34.1 Backtothe Example

ii

36
36
36
37
37
38
39
39
40
41

43
43
43
44
45
47
47
51
51
51
52
52
52
52
53
53
53

57

57
58
59
59
61
62
63
65
65
67
68

3.5
3.6

342

Benefits

Related Works
Conclusion & Future Work

3.6.1
3.6.2

Conclusion
Future Work

Programming GPUs from High Level Data Flow Models

M. Barreteau, R. Barrere and E. Lenormand

Introduction
Problem and Related Work
The Adaptive Beam Forming Application

4.1
4.2
43

4.4

4.5

4.6
4.7

4.3.1 Adaptive Beamforming Basic Description
4.3.2 Description of the ABF Functions
433 Corner-Turns Lo
Tool Design Flow
441 Modeling
44.1.1 Application Capture
4.4.1.2 Execution Platform Capture
442 Parallelisation.
4421 TaskParallelism
44272 DataParallelism
4423 Space and Time Optimisations
443 CodeGeneration,
Host Code Generation
4.5.1 Execution Platform-Independent Code
45.1.1 FunctionalCode
45.1.2 AsynchronousCode
4.5.1.3 Data Transfer Optimisation
4.5.1.4 Multiple Command Queues
4.5.2 Execution Platform-Dependent Optimisations
4.5.2.1 Execution Platform-Specific Code Generation . .
4.5.2.2 Multiple Devices Code Generation
4523 Gridification
4.5.3 Tooling Support
453.1 CodePorting
4532 Debug

4533 Profiling

Kernels Generation
Code Optimisation Process

4.7.1

Host Optimisations
4.7.1.1 Optimised Gridification
47.1.2 Software Pipelining

iii

68
68
69
69
69

73

73
74
75
76
77
79
80
80
80
80
81
82
83
84
85
85
86
86
87
&9
&9
91
92
92
93
95
95
95
95
96
97
97
97
98

4.7.2 Application Profiling
4.7.3 Kernel Optimisations
48 Results. e
4.8.1 Basic OPENCL Code Generation
4.8.2 HostOptimisation
4.8.3 Kernel Optimisation
4.8.4 Complete Optimisation
4.8.5 Synthesis
4.9 Conclusion and Perspectives

Optimization methodology for Parallel Programming of Homogeneous
or Hybrid Clusters
S. Vialle and S. Contassot-Vivier
5.1 Motivations and Objectives
5.1.1 Programming Modern Distributed and Parallel Architectures
5.1.2 Benchmark Application
5.1.3 Experimental Context
5.2 Interest and Difficulties of Computations and Communications
Overlapping e
5.2.1 Decision Criteria to Implement Overlapping
5.2.2 Attempting to Use Non-Blocking MPI Communications
5.2.3 Synchronous MPI Communications inside Dedicated Threads
5.2.4 Overlapping MPI Communications and GPU Computations
5.2.4.1 Natural Overlapping of GPU Computations with
Blocking MPI Communications
5.2.4.2 Inserting the CPU/GPU Data Transfers in the
Overlapping Mechanism
5.2.5 Experimental Comparison and Analysis of the Overlapping
Schemes
5.3 Impact of Optimization Degree in Computing Kernels
5.3.1 Typical Degrees of Optimization
5.3.1.1 Optimization of CPU Computing Kernels
5.3.1.2 Optimization of GPU Computing Kernels
5.3.2 Experimental Highlighting of the Kernel Optimization . . .
5.3.3 Decision Chain for Optimization of Computing Kernels
5.3.3.1 Technical Criterion
5.3.3.2 Required Expertise Criterion
5.3.3.3 Use Context Criterion
5.3.34 Complete Decision Chain
5.4 Global Experiments and Analysis
5.4.1 Experimentation Strategy
54.2 Experimental Results

v

111

112
112
113
115

116
116
121
121
123

125

127

129
131
131
131
133
135
137
137
138
138
139
139
139
140

5.5

5.4.2.1 Performance on Multicore CPU Cluster. 140

54.2.2 Performance on GPU Cluster 142
543 Discussion 143
5.4.3.1 Assessment of Overlapping Strategy on CPU
Clusters e 143
5.4.3.2 Assessment of Overlapping Strategy on GPU
Clusters 144
5.4.3.3 Looking for the Most Interesting Solution 145
Conclusion 146

Program Sequentially, Carefully, and Benefit from Compiler Advances
for Parallel Heterogeneous Computing 149
M. Amini, C. Ancourt, B. Creusillet, F. Irigoin and R. Keryell

6.1
6.2

6.3

6.4
6.5

6.6
6.7

Introduction L oL 150
Program Structure and Control Flow 151
6.2.1 Well-Formed Loops... 152
6.22 ...andLoopBodies 153
6.2.3 Testing Error Conditions 153
6.2.4 Declaration Scope 154
6.2.5 Interprocedural Control Flow 155
Data Structures and Types 155
6.3.1 Pointers 156
6.3.2 AITays. 158

6.3.2.1 Providing and Respecting Array Bounds 158

6.3.2.2 Linearization 159

6.3.2.3 Successive Array Element References 159
6.33 Casts 159
Directives and Pragma (OpenMP ...) 160
Using Libraries 162
6.5.1 Relying on Efficient Libraries 162
6.5.2 Quarantined Functions: Stubs 162
Object Oriented Programming 163
Conclusion 164

Using MELT to Improve or Explore your GCC-Compiled Source Code 171
B. Starynkevitch

7.1

7.2

Introductionto MELT 171
7.1.1 GCCand MELT 171
7.1.2 A Glimpseinto Gimple 172
7.13 MELT Features 176
MELT Usage for HPC Customization. 177

7.2.1 Traversing GCC Internal Representations with MELT
7.2.2 Taming HPC Parallelism with GRAPHITE and MELT
7.2.3 Why HPC needs GccC Extensions and Customizations? . . .
7.3 Some Hints and Advice for Taming GCcC with MELT
7.3.1 Choosing the Right Passes
7.3.2 Using the Available Representations
7.4 Conclusion and Future Work

OpenCL: A Suitable Solution to Simplify and Unify High Performance
Computing Developments
J. Passerat-Palmbach and D.R.C. Hill
8.1 Introduction oL
8.2 On the Need for an Abstraction Layer for OpenCL
82.1 OpenCLinBrief
8.2.2 OpenCL: A Constrained APT
8.3 OpenCL Support on Various Platforms: The FPGAs Case Study
8.3.1 Source-to-Source Transformation Approach
8.3.1.1 At the Beginning, there was CUDA
8.3.1.2 ThencomesOpenCL
8.4 High-Level APIs for OpenCL: Two Philosophies
8.4.1 Ease OpenCL Development through High-Level APIs
8.4.1.1 Standard API C++ Wrapper
84.12 QtOpenCL
84.1.3 PyOpenCL
8.4.2 Generating OpenCL Source Code from High-Level APIs . .
8421 ScalaCL
8422 Aparapi
8.4.3 A Complete Solution: JavaCL
8.4.4 Summary Table of the Solutions
8.5 Perspectives
8.6 Conclusion 0 0o

Parallel Preconditioned Conjugate Gradient Algorithm on GPU

F. Andzembe and J. Koko

9.1 Introduction

9.2 Conjugate Gradient Algorithm
9.2.1 Motivation
9.2.2 Conjugate Gradient
9.2.3 Preconditioned Conjugate Gradient

9.3 Preconditioners L
9.3.1 Incomplete Factorizations

vi

187

10

11

9.3.2 Jacobi Preconditioner 215

9.3.3 Approximate Inverses, 215
9.3.4 SSOR Preconditioner 216
9.4 GPU Implementation 217
9.4.1 Matrix Storage 217
942 CUDA 218
9.5 Numerical Experiments 221
9.6 Conclusion 223
Solving Sparse Linear Systems with CG and GMRES Methods on a GPU
and GPU Clusters 227
R. Couturier and L. Ziane Khodja
10.1 Introduction 227
10.2 Tterative Methods 228
10.2.1 Conjugate Gradient Method 229
10.2.2 Generalized Minimal Residual Method 231
10.3 Sequential Sparse Linear SolversonaGPU 232
10.3.1 GPU Implementation 232
10.3.2 PerformancesonaGPU 235
10.4 Parallel Sparse Linear Solvers on GPU Clusters 238
10.4.1 Parallel Implementation on GPU Clusters 238
10.4.2 Performancesona GPU Cluster 241
10.5 Conclusion L 245

Bioinformatics of Non-Coding RNAs and GPUs, A Case Study:

Prediction at Large Scale of MicroRNAs in Genomes 249
F. Tahi, V.D. Tran, S. Tempel and E. Mahé

11.1 Introduction 250

11.2 The World of Non-CodingRNAs 251

11.2.1 ncRNA Structure 251

11.2.2 Examplesof ncRNAs 253

11.2.2.1 Transfer RNA 253

11.2.2.2 Ribosomal RNA 253

11.2.2.3 Small NucleolarRNA 254

11.22.4 MicroRNA 254

11.3 Bioinformatics and Non-Coding RNAs 255

11.3.1 ncRNA Secondary Structure Prediction 256

11.3.2 ncRNA Pseudoknot Prediction 256

11.3.3 ncRNA Tertiary Structure Prediction. 257

11.3.4 ncRNA Identification 257

11.3.5 ncRNA Structure Comparison 258

vii

12

11.4 EvryRNA Bioinformatics Platform
11.4.1 P-DCFold Algorithm
11.42 SSCA Algorithm
11.4.3 Tfold Algorithm
11.4.4 ncRNAclassifier Algorithm
11.4.5 BoostSVM Algorithm
11.4.6 miRNAFold Algorithm

11.5 Search for miRNA Precursors in Genomes
11.5.1 Introduction.
11.5.2 miRNAFold Method

11.5.2.1 The Approach
11.5.2.2 The Algorithm
1153 Results o

11.6 Search at Large Scale for miRNA Precursors in Genomes: Use of
GPUSs . . .
11.6.1 The GPU Version of miRNAFold Algorithm
11.6.2 Results Obtained by the GPU Version of miRNAFold
11.6.3 Conclusion

11.7 GPU Application in Bioinformatics
11.7.1 Next Generation Sequencing
11.7.2 Sequence Identification
11.7.3 RNA Structure Prediction

Migrating a Big-Data Grade Application to Large GPU Clusters
D. Tello, V. Ducrot, J.-M. Batto, S. Monot, F. Boumezbeur,
V. Arslan and T. Saidani
12.1 Introduction
12.1.1 Metagenomics DataFlood
12.1.2 Selection of Candidate Codes
12.2 Porting Metaprof to Multi-Core Architectures
12.2.1 First Optimizations
12.2.2 Profiling
12.2.2.1 Hotspots
12.2.3 Porting to Multi-Core Based Clusters
12.2.4 Single Node Benchmarks
12.2.4.1 Scalability
12.2.4.2 AboutBindings
12243 OccupanCy oo v v v v v e
12244 ConcurrenCy v v vvi e
12.2.45 Locksand Waits
12.3 Porting Metaprof toGPU
12.3.1 Cuda-MPI vO Implementation (Shared Memory)

viii

12.3.1.1 MPILoad Balancing
123.1.2 Results
12.3.1.3 Limitations
12.3.2 MetaProf Cuda-MPIvl.
12.3.2.1 Limiting the Number of Registers
12.3.2.2 Getting Rid of Memory Constraints
12323 LoadBalancing
12.3.2.4 Transfer/Calculation Overlapping
12.3.2.5 Improving Memory Access: Shared Memory vs
Texture L oL
12326 Results
12.3.3 MPI-OpenCL Implementation
12.3.4 Further Optimizations
12.3.4.1 InputFile Format
12.3.4.2 Further Cuda Optimisations
12.3.4.3 MPI Processes Interleaving
12.3.5 Parallelization Assistance Tools
12.3.5.1 Approach
12352 Resultso
12353 Conclusion
12.3.6 Summary
12.3.7 Power Efficiency,
12.3.7.1 OpenMP Implementation Power Efficiency
12.3.7.2 MPI+OpenMP Implementation Power Efficiency .
12.3.7.3 GPU Implementation Power Efficiency
123774 Conclusion
12.3.8 What about Workstations
12.3.8.1 Scalability
12.3.8.2 GPU Occupancy Rate
12.3.8.3 System Global Monitoring
12.3.84 Outof Memory Issue
12.3.8.5 Influence of Other Parameters

12.4 Conclusion e

13 Testing Random Numbers: When OpenCL is the Right Choice
J.M. Chauvet and E. Mahé
13.1 Introduction
13.2 Related Works
13.3 Porting MonoBit and Poker Tests to OpenCL and CUDA

13.3.1 TheMonoBitTest
13.3.1.1 Choice of the Right Data Format
13.3.1.2 Working with Fixed Size

iX

13.3.1.3 OpenCL Implementation 314

1332 ThePokerTest 316
13.3.2.1 OpenCL Implementation 317

134 Results.o . o 319
13.4.1 Hardware Configuration 319
13.4.2 Serial versus Parallel Code 320
13.4.3 Scalability 320
13.4.3.1 Monobit Scalability 320

13.4.3.2 Poker Scalability 321

13.4.4 Choosing the Right Work-Group Size 322
13.4.4.1 GPU Work-Group Size 322

13.4.4.2 CPU Work-Group Size 323

1345 IGPvsCPU o 324
13.4.6 CUDAvsOpenCL 324

13.5 Conclusion and Future Work 325
Index 327

Foreword

Our modern society is increasingly relying on computers. They are ubiquitous in our
daily life even if they are hidden in most cases (in appliances, cars, telephones, USB
keys, etc.). Digital television (TV) would not be the unique broadcasting system today
without important compute resources at the recording end and in the display. TV sets
nowadays use advanced graphics processing units (GPU) to upscale digital Versatile
Disc (DVD) images (not to mention BluRays®) or pan and zoom your favorite show.
The anti-lock braking system (ABS) of your car is controlled by a computer. The
latest three-dimensional scan of a baby would not be possible without computers and
powerful GPUs. This list would be too tedious to make exhaustive.

In the scientific and technical world, computers also play an ever growing role, fre-
quently replacing experiments. Numerical simulation has an increasing economical
weight in various domains ranging from car crashes to the evaluation of the biological
effects of a new pharmaceutical molecule. Simulations have replaced experiments in
many cases either because they reduce costs by allowing many variations of experi-
mental conditions (in destructive experiments such as car crashes) or simply because
experiments are not feasible (e.g. seeing a protein unfolding in which case in vitro
experimentation has been replaced by “in silico” analysis).

In all cases, using simulations help the scientists to understand complex phenomena.
Yet this understanding is closely related to the size of the simulation: the finer the
simulation, the greater the insight can be. A finer simulation is for example to predict
the weather for areas of 10km? instead of 100km?. As a consequence the larger a
simulation is, the more compute capability is required. For example, dividing the
size of a cubic simulation by two in each dimension of space increases the number of
elements to process by 8 (which means that the processing time also has increased by a
factor of 8 or more, depending on the type of simulation). Users (or customers) are not
always ready to pay for such an increase in simulation time and they dream of speedier
computers solving larger problems in a constant time. Since computers are powered
by electricity, deploying more compute power leads to more electrical consumption.
This cannot be an endless process for the price of electricity will eventually limit the
growth of the supercomputers. Current petaflop machines are in the range of SMW.
With a simple extrapolation, an exaflop machine could be in the order of 100MW or
more without a technology change.

To overcome this practical (infrastructure size) and economic limit (i.e. the budget
to run the installation in the long run), a true disruptive technology is required and
is in fact already emerging. The evolution of supercomputers processing elements is
parallel to the one of commodity hardware (e.g. smartphones): the number of process-

X1

ing units per chip is increasing to deliver greater performances within a constrained
energy budget (limit the number of megawatts for the former, longer battery life for
the latter). This is especially true of the usage of graphical processing units for general
purpose computations (GPGPU).

Envisioned at CEA as early as 2007, the use of GPU computing is becoming wide-
spread (medicine, avionics, HPC) if not mainstream (Apple is harnessing the GPU
power through OpenCL and its OS X, your smartphone relies of its GPU to playback
videos and so on). GPUs solve part of the equation for a number of applications: they
are of an order of magnitude more efficient than regular processors for the same elec-
trical needs, on some algorithms. An increasing number of success stories demon-
strates that GPUs are here to stay for a long time in high performance computing
(either embedded or not). In that respect, the Titane and Curie machines hosted at
CEA (see http://www—hpc.cea. fr) are good examples of advanced architec-
tures which have found a community of users for their ability to produce results for
the hardest problems yet in a limited time.

The introduction of new hardware compute technologies forces evolutions in the
software stack used by programmers. Operating systems, compiler chains as well as
libraries are not immune to the nature of the underlying hardware. But the devel-
opment of a comprehensive software stack takes a significant amount of time. It is
therefore very important to start the developments as soon as possible to make sure
that the code developers have all the necessary tools for their daily job, when the given
technology will spread to the masses. It means also that those developers will have to
change their programming habits and adapt themselves to the new technologies.

GPU computing is still a vast field of research which encompasses various domains
such as programming languages, compiler technologies, parallelization techniques or
linear algebra methods. Such research is fundamental in every field of computer sci-
ence. They aim to increase the productivity of the developers, yield a better maintain-
ability of the code and reach the best possible performances. The impact of the results
achieved is enhanced if the underlying technologies rely on open specifications and
are themselves made available open to the whole community of developers and users.
Along this line, OpenCL is emerging as the only viable low level technology to drive
many forms of compute units, yet in a portable manner.

OpenGPU, a project of the systematic cluster of competitiveness, is clearly at the
crossroads of all these needs (such as high performance or portability) and techniques
(use of a GPU, CUDA or OpenCL programming). OpenGPU has proved to be a
good platform to go forward in the understanding of the pros and cons of GPUs and,
at the same time, to promote GPUs’ diffusion through the development of a viable
ecosystem. This book, entitled Patterns for Parallel Programming on GPU edited by
Frédéric Magoules, summarizes some of the achievements of the OpenGPU project.
It is an invitation for the reader to deep dive into the fascinating world of GPU pro-
gramming and usage.

Guillaume Colin de Verdiere
CEA, France

Xii

Preface

At present, multi-core and many-core platforms lead the computer industry, forcing
software developers to adopt new programming paradigms, in order to fully exploit
their computing capabilities. Graphics Processing Units (GPUs) are one representative
of many-core architectures, and certainly the most widespread.

GPU-based application development requires a great effort from application pro-
grammers. On one hand, they must take advantage of the massively parallel platform
in the problem modeling. On the other, the applications have to make an efficient use
of the heterogeneous memory system, managing several levels that are software or
hardware controlled. Generally the programmers’ methodology consists in evaluating
several mapping alternatives, guided by their experience and intuition, which becomes
inefficient for software development and maintenance.

In order to help the programmers to make the good choices, this book presents in
thirteen chapters some methodologies and design patterns for parallel programing on
GPUs. Each chapter, written by different authors, presents a state-of-the-art of some
innovative methods, techniques or algorithms, useful for GPU computing. A bibliog-
raphy is included at the end of each chapter for the reader who wishes to go further.

This book starts at Chapter 1 with an evaluation of state-of-the-art parallelizing com-
pilers generating CUDA code for heterogeneous computing. This chapter evaluates
and compares tool frameworks that automatically generate code for GPUs, saving
time and effort to programmers. These frameworks take advantage of polyhedral
model techniques to exploit parallelism and to satisfy the specific GPU constraints.
The authors show the key features of some of these source-to-source compilers and
analyze the codes generated. Finally, the authors discuss the importance of some key
aspects such as data mapping and code quality.

In Chapter 2, the authors present an unusual strategy to perform dynamic code gen-
eration for GPUs. Usual compiler relies on assumption that are not always true, which
can lead to sub-optimal code due to a lack of information available to the compiler. By
using a code generator called deGoal that can produce a code in a pseudo-assembly
code representation for GPUs, the authors show how to dynamically generate code
usable by the GPU. This chapter illustrates the tool usage by the matrix multiplication
on various configurations. This example show that it allows to develop an application
and get near optimal results faster than developping a specialized version.

Chapter 3 shows how to achieve on GPUs great performance with applications com-
monly handled by CPU only. This hybrid system leads to complex programming
designs combining multiple paradigms to manage each hardware architecture. The

xiii

authors present how parallel skeletons can help tackle this challenge by abstracting
some of these programming designs while automating optimizations. Through a sim-
ple example using the OCaml programming language to develop and compose skele-
tons, this chapter demonstrates how simple modifications in using parallel skeletons
can ease GPU programming while offering good performance speed-ups.

Chapter 4 shows how data flow applications can be efficiently programmed on GPUs
from a unique high level capture. The authors rely on a tooling approach, through
the SPEAR design environment, to point out the underlying productivity gain with
regard to performance. For efficient code generation purposes, several optimisations
at different levels are detailed, followed by some numerical experiments performed on
a representative radar application.

Chapter 5 proposes a study of the optimization process of parallel applications run
on modern hybrid architectures. Different optimization schemes are proposed for
overlapping computations with communications; and for computation kernels. De-
velopment methodologies are introduced to obtain different optimization degrees and
specific criteria are defined to help developers to find the most suited degree of opti-
mization according to the application and parallel system considered. Both the per-
formance and code complexity increase are analyzed.This last point is an important
issue, as it directly impacts on development and maintenance costs. Experiments are
performed to evaluate the different variants of a benchmark application that consists
in a dense matrix product.

Porting and maintaining multiple versions of a code base require different skills; and
the efforts required in the process, as well as the increased complexity in debugging
and testing, are time consuming. Some solutions based on compilers emerge. They
are based either on directives added to C in openhmpp or openacc or on automatic
solutions like pocc, Pluto, ppcg, or pardall. However compilers cannot retarget in
an efficient way any program written in a low-level language such as unconstrained
C. Programmers should follow good practices when writing code so that compilers
have more room to perform the transformations required for efficient execution on
heterogeneous targets.

Chapter 6 explores the impact of different patterns used by programmers, and defines
a set of good practices allowing a compiler to generate efficient code.

Chapter 7 introduces the Melt framework and domain-specific language to extend
the Gee compiler. It explains the major internal representations (Gimple, Tree-s, efc.)
and the overall organization of Gece. It shows the major features of Melt and illustrates
why extending and customizing the Gee compiler using Melt is useful; for instance,
to use GPUs through OpenCL. It gives some concrete advice and guidelines for the
development of such extensions with Melt.

In Chapter 8, the authors study the opportunities that OpenCL offers to high perfor-
mance computing applications to provide a solution to unify new developments. In
order to overcome the lack of native OpenCL support for some architectures, the au-
thors survey the third-party research work that propose a source-to-source approach to
transform OpenCL into other parallel programming languages. For instance, FPGAs
are considered as a case study, because of their dramatic OpenCL support compared

to GPUs. These transformation approaches could also lead to potential works in the
model driven engineering (MDE) field as conceptualized in this chapter. Moreover,
OpenCL’s standard API is quite rough. Thus, the authors introduce several APIs from
the simple high-level binder to the source code generator to ease and boost the devel-
opment process of any OpenCL application.

In Chapter 9, the authors propose a parallel implementation of the preconditioned
conjugate gradient algorithm on a GPU platform. The preconditioning matrix is a
first order approximate inverse derived from the SSOR preconditioner. Used through
sparse matrix-vector multiplication, the preconditioner proposed by the authors is
well-suited to massively parallel architecture like GPUs. As compared to CPU im-
plementation of the conjugate gradient algorithm, the GPU preconditioned conjugate
gradient implementation is between eight and sixteen times faster.

In Chapter 10, the authors present the implementation on GPUs of two classical
methods for solving sparse linear systems. Those methods are the conjugate gradient
method which is usually used for solving symmetric linear systems, and the general-
ized minimal residual method (GMRES), which is commonly used for solving unsym-
metric linear systems. For each method, the authors describe how they have adapted
the sequential version for the GPU with the CUDA programming environment. The
performances of these parallel algorithms are tested and analyzed on GPU and on CPU
clusters.

Non-coding ribonucleic acid (RNA) are functional RNAs that are not translated into
proteins. Computational studies of non-coding RNAs have recently become an impor-
tant challenge in bioinformatics, including their identification and structure prediction.
In Chapter 11, the authors present several algorithms for these applications. With the
development of next-generation sequencing technologies, huge amounts of genomic
and RNA sequences data have been produced, and a parallelization of such tools is
required to overcome the long execution time. In this chapter, miRNAFold, an algo-
rithm developed by the authors for the search for microRNAs in genomic sequences,
is described together with its implementation in CUDA on GPUs.

Chapter 12 aims to provide both a feedback and a methodological approach on
how to port a legacy application to GPU clusters for quantitative metagenomic data,
i.e., studying many organisms with whole deoxyribonucleic acid (DNA) information,
without getting access to the single and pure species information. The proposed ap-
proach is based on the clustering principles that rely on a large correlation matrix com-
putation on polled data. To allow fast computation and get the best of the GPU, many
optimizations to cover several optimization strategies are investigated by the authors.
This chapter explores dynamic and static optimizations and presents benchmarks on
supercomputers and small clusters of GPUs.

Testing random numbers relies on a heavy battery of statistical tests that can take
hours of computations or small samplings of numbers. In Chapter 13, the authors
demystify this slow checking process by showing the parallel nature of two represen-
tative tests and how to implement them on GPU with OpenCL. The authors illustrates
these concepts with two examples of test codes translated from C to OpenCL. In ad-
dition, an original algorithm, made in the context of testing the quality of the true

random number generator is illustrated, and provides a totally new and safe way of
dealing with random number generator.

Naturally, the present book cannot provide a complete record of the many approaches,
applications, features and schemes related to GPUs. However, it does provide a use-
ful synopsis of the recent methodologies used in academic circles and in industry to
handle efficiently hybrid architectures. This book will be of interest to engineers,
computer scientists and applied mathematicians. The editor wishes to thank the au-
thors for their willingness to contribute to this book dedicated to patterns for parallel
programming on GPUs.

Frédéric Magoules
Ecole Centrale Paris, France

