COMPUTATIONAL MODELLING OF MASONRY, BRICKWORK AND BLOCKWORK STRUCTURES

Also available from Saxe-Coburg Publications

Derivational Analogy Based Structural Design

B. Kumar and B. Raphael

3D Modeling with ACIS

J. Corney and T. Lim

Strength of Materials: An Undergraduate Text *G.M. Seed*

Innovative Computational Methods for Structural Mechanics *Edited by: M. Papadrakakis and B.H.V. Topping*

Parallel and Distributed Processing for Computational Mechanics: Systems and Tools *Edited by: B.H.V. Topping*

High Performance Computing for Computational Mechanics *Edited by: B.H.V. Topping and L. Lämmer*

Parallel Finite Element Computations

B.H.V. Topping and A.I. Khan

COMPUTATIONAL MODELLING OF MASONRY, BRICKWORK AND BLOCKWORK STRUCTURES

Edited by J.W. Bull

© Civil-Comp Ltd, Stirling

published 2001 by Saxe-Coburg Publications Dun Eaglais, Station Brae, Kippen Stirling, FK8 3DY, UK

Saxe-Coburg Publications is an imprint of Civil-Comp Ltd

ISBN 1-874672-04-0

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

Chapter 9 of this book contains material from: Genna F., Di Pasque M., Veroli M., Ronca P., "Numerical analysis of old masonry buildings: a comparison among constitutive models", Engineering Structures, vol. 20, pages 37-53, 1997. This material is reprinted with kind permission of Elsevier Science Ltd., Oxford, England.

Printed in Great Britain by Bell & Bain Ltd, Glasgow

Contents

Pr	Preface			vii		
1	Damage and Failure Models E. Papa					
	1.1	Introd	uction	1		
	1.2	Hetero	ogeneous models	2		
	1.3	Homogeneous models				
	1.4 An elastic-plastic damage model for masonry		astic-plastic damage model for masonry	5		
		1.4.1	Damage evolution law	8		
		1.4.2	Numerical analyses	10		
	1.5	A unil	ateral damage model based on a homogenisation procedure	13		
		1.5.1	The damage model for bricks and mortar	14		
		1.5.2	The homogenisation procedure	18		
		1.5.3	Numerical analyses	19		
	1.6	Concl	usions	21		
2	Formulation of Elastic-plastic Joint Elements					
-	and	their A	polication to Practical Structures	27		
	T. A	oki	**			
	2.1	Introd	uction	27		
	2.2	The F	formulation of Elastic-plastic Joint Elements (Model I: Truss			
	members breaking in tension)		ers breaking in tension)	28		
		2.2.1	Angle φ_0 and Stiffness of E_{sd} and E_{sv}	30		
		2.2.2	Yielding Condition for Plane Stress	32		
		2.2.3	Formulation of Elastic-plastic Joint Element for the Finite El-			
			ement Method	37		
	2.3 An Analysis of Plane Concrete Under Combined Stress (Model		nalysis of Plane Concrete Under Combined Stress (Model II:			
		Joint e	elements for thin layers of mortar)	38		
	2.4	.4 Slippage under a Footing		40		
		2.4.1	Joint Elements for Soil (Model III: Mohr-Coulomb yielding			
			condition)	40		
		2.4.2	Analysis of Slippage Occurs under a Footing	43		
	2.5	Concl	usion	47		

3	Eart	hquake	and Vibration Effects	53
	C.A.	Syrmak	zezis and A.A. Sophocleous	
	3.1	.1 Introduction		
	3.2	Mason	ry structures	55
	3.3	Metho	ds of analysis	57
	3.4	Mason	ry computational models	58
	3.5	Structu	Iral Simulation	59
	3.6	Simula	tion of Actions	59
	3.7	Simula	tion of Materials Characteristics	60
		3.7.1	General	60
		3.7.2	Modulus of elasticity - Poisson ratio	60
		3.7.3	Shear Modulus	61
		3.7.4	Compressive - Tensile Strength	61
		3.7.5	Failure criterion	62
	3.8	Applic	ations	65
		3.8.1	Description of the structures	66
		3.8.2	Structural simulation of the structures	66
		3.8.3	Simulation of actions	67
		3.8.4	Material simulation	68
		3.8.5	Analysis results	68
		3.8.6	Failure analysis results	68
		3.8.7	Repairing and/or strengthening decisions	71
		3.8.8	Reanalysis	72
		3.8.9	Final Failure Analysis	75
	3.9	Conclu	isions	75
4	4 The Dynamics of Masonry Bell Towers			79
	A.R.	Selby a	nd J.M. Wilson	
	4.1	Introdu	action	79
	4.2	Tower	construction, bell frames and bells	81
	4.3	Forces	from a swinging bell	84
	4.4	Measu	red Tower Response	89
	4.5	Compu	itational modelling	93
		4.5.1	Timoshenko beam models	95
		4.5.2	3-D finite element modelling	97
		4.5.3	Durham Cathedral and Newcastle Cathedral	00
		4.5.4	Summary of FE Analyses	.02
	4.6	Service	eability and ultimate limit conditions 1	.03
		4.6.1	Serviceability	.03
		4.6.2	Ultimate limits and factors of safety	.05
	4.7	Conclu	isions	.06
	4.8	Acknow	wledgements	06

5	Sett	lement]	Induced Damage to Masonry Buildings	109		
	C. A	ugarde				
	5.1	Introduction				
	5.2	Curren	t procedures used to assess settlement damage due to tunnelling	110		
		5.2.1	Numerical models of the tunnelling settlement problem	111		
		5.2.2	Modelling masonry	112		
	5.3	A three	e-dimensional finite element model	113		
		5.3.1	Simulation of tunnelling	113		
		5.3.2	Modelling a building	114		
		5.3.3	Choice of masonry model	114		
		5.3.4	Hardware & software	115		
	5.4	An ela	stic no-tension material model for masonry	115		
		5.4.1	The basic formulation	115		
		5.4.2	Validation of the masonry formulation	117		
		5.4.3	Implementation and numerical stability	121		
		5.4.4	Post-processing masonry data	122		
	5.5	Two-di	imensional studies of façades	123		
		5.5.1	Façade types analysed	123		
		5.5.2	Analysis procedure	123		
		5.5.3	Results for a plain façade	125		
		5.5.4	Results for a façade with openings	127		
		5.5.5	Discussion	128		
	5.6	The th	ree-dimensional model of tunnelling	129		
		5.6.1	Example analyses of a simple building	129		
		5.6.2	Results	131		
		5.6.3	Modelling the effects of shaft construction on an 18th century			
			stone clad church, Maddox Street, London	134		
		5.6.4	Results	136		
		5.6.5	Discussion	139		
	5.7	Conclu	uding remarks	140		
	5.8	Ackno	wledgements	140		
6	Mod	Modelling and Behaviour of Masonry Walls in Fire				
	M. C	D'Gara				
	6.1	Introdu	action	143		
	6.2	Therm	o-Structural Behaviour of Masonry Walls in Fire	145		
		6.2.1	Overview	145		
		6.2.2	Thermal Bowing	145		
		6.2.3	Masonry Material Properties	146		
		6.2.4	Wall Geometry	147		
		6.2.5	Boundary Conditions	147		
		6.2.6	Applied loading	148		
		6.2.7	Moisture effects and material spalling	150		
	6.3	Mecha	nical Material Properties at Elevated Temperature	150		

iii

		6.3.1	Overview	150		
		6.3.2	Concrete material properties	151		
		6.3.3	Elevated temperature clay and calcium silicate material be-			
			haviour	157		
	6.4	Mather	natical Modelling of an Elevated Temperature Masonry Material	157		
		6.4.1	Elevated temperature concrete material model	158		
		6.4.2	Elevated temperature clay material model	161		
	6.5	Descrip	otion of the Numerical Model	162		
		6.5.1	Justification of Numerical Strategy	162		
		6.5.2	The Finite Element Model Developed	163		
		6.5.3	Validation of the material model and its implementation	166		
	6.6	Numeri	ical Examples and Comparison with Experimental Results	166		
		6.6.1	Experimental Investigation	166		
		6.6.2	Analysis of Experimental Results	168		
		6.6.3	Discussion of Results	169		
	6.7	Conclu	ding remarks	175		
7	Disco	ontinuo	us Deformation Analysis of Masonry Bridges	177		
	N. Bi	icanic, E	D. Ponniah and J. Robinson			
	7.1	Introdu	ction	177		
	7.2	Compu	tational Frameworks for Masonry	179		
	7.3	Discon	tinuous Deformation Analysis, DDA	181		
	7.4	Couple	t/Heyman Benchmark Problem	184		
	7.5	Edinbu	rgh Arch and Influence of Backfill	188		
	7.6	Conclu	sions	193		
8	Mod	elling N	Iasonry Arch Bridges	197		
	C. M	Melbourne and M. Gilbert				
	8.1	Introdu	ction	197		
	8.2	The inf	luence of masonry materials	198		
	8.3	Develo	pment of modelling strategies for masonry arch bridges	201		
	8.4	The 'mechanism' method of analysis: a linear programming formulation				
		8.4.1	Basic method	204		
		8.4.2	Removing 'no-sliding' assumption	208		
		8.4.3	Including crushing of the masonry in the analysis	209		
		8.4.4	Multi-span arches	211		
		8.4.5	Multi-ring arches	211		
		8.4.6	Masonry in the spandrel zone	212		
		8.4.7	Soil-structure interaction	213		
	8.5	The use	e of elastic methods of analysis for masonry arch bridges	213		
		8.5.1	Modelling cracking	214		
		8.5.2	Example	215		
	8.6	Conclu	sions	215		
	8.A	Derivat	ion of the transformation matrices for rigid block analysis	216		
			<i>C J L L L L L L L L L L</i>			

9	Num	erical A	Analysis of Old Masonry Buildings	221	
	F. Genna and P. Ronca				
	9.1	0.1 Introduction			
	9.2	Issues i	in the numerical modelling of old masonry	224	
		9.2.1	Geometry of the numerical model	224	
		9.2.2	Discrete numerical model	224	
		9.2.3	Loading and boundary conditions	225	
		9.2.4	Choice of formulation and finite elements	225	
		9.2.5	Choice of the constitutive model	226	
		9.2.6	Choice of the material parameters	229	
		9.2.7	Other issues	230	
	9.3	Analys	is of masonry walls	231	
		9.3.1	A wall of the San Faustino cloister in Brescia, Italy	231	
		9.3.2	A wall of the church "Chiesa della Disciplina" in Verolanuova,		
			Italy	242	
	9.4	Analys	is of arches and vaults	251	
		9.4.1	Influence of structural details on the computational model	252	
		9.4.2	The computational models of the vault structural details	252	
		9.4.3	Elastic analysis of a cloister vault with frescoes of the XVIII		
			century	256	
		9.4.4	Limit analysis of vaulted masonry structures subjected to both		
			vertical and horizontal actions	258	
		9.4.5	Limit analysis of a supporting arch of the Basilica Superiore		
			of Assisi, Italy	262	
	9.5	Conclu	ision	266	
			~		
10	Histo	storic Masonry Structures			
	E.A.	W. Mau	nder and W.J. Harvey		
	10.1	Introdu		273	
	10.2	Structu	Iral Philosophy	275	
	10.3	Compu	itational Techniques	276	
		10.3.1	A Review	277	
		10.3.2	Thrust lines in skeletal forms	278	
		10.3.3	Thrust lines in continuous forms	284	
	10.4	Case st	tudies of historical masonry structures	292	
		10.4.1	Bridgemill Bridge	292	
		10.4.2	Horrabridge	293	
		10.4.3	Exeter Cathedral	298	
		10.4.4	Wells Cathedral	305	
	10.5	Closure	e	307	
Inc	lex			312	
Au	thor]	Biograp	hies	319	

Preface

This book is aimed at: design engineers who need to know the latest advances in masonry, brickwork and blockwork; architects wanting to develop building shape still further; engineering consultants who must ensure designs are safe; academics who research into masonry and postgraduates approaching masonry for research purposes.

The use of masonry, brickwork and blockwork for building and civil engineering structures has a long history going back to ancient times. For many hundreds of years, the main masonry material has been stone, with clay becoming the main brickwork material. With the introduction of other materials including concrete, the term blockwork is now also used.

As masonry and brickwork structures have a long history, design standards have generally accepted the empirical design requirements that place 'natural' height restrictions on masonry and brickwork structures. Further, brickwork and blockwork are often still seen as just infill material for steel framed or reinforced concrete buildings.

With the advent of reinforcing or post tensioning brickwork, increasingly complex structures became a possibility. Further there is an increasing requirement to assess the strength of existing masonry structures and to determine the most suitable means of improving masonry performance.

Designers, engineers and research workers want to exploit masonry to its full potential. To determine how masonry reacts to extreme conditions, there is a need for the computational modelling of a whole range of masonry, brickwork and blockwork materials and structures, including the composite action of the brick/joint interface.

Although much of the information on masonry structures is available from publications in journals and at conferences, masonry research is widely scattered throughout the world. In recognition of this fact, the expert chapter authors in this book have been drawn together from around the world. Their up-to-date knowledge and expertise in masonry structures is drawn upon to determine the present state of the computational modelling of masonry, brickwork and blockwork structures and to point to future developments.

This book brings together a wide range of masonry, brickwork and blockwork disciplines and shows where computational modelling has been used successfully. The ten chapters have been divided into five topic areas: damage and failure models; vibration and earthquake effects; settlement; fire; and historic buildings. Each topic area can be described briefly as follows:

Damage and failure models

Chapter one reviews the literature regarding the homogeneous and heterogeneous constitutive laws for masonry and describes two models based on damage mechanics. In the first model, masonry is considered as a homogeneous, orthotropic material, but in the second model the overall mechanical properties of masonry are determined based on the properties of the components. The numerical results from the two models are in good agreement with experimental data.

Chapter two considers the formulation of an elastic-plastic joint element to determine the structural behaviour and characteristics of masonry structures. The chapter then goes on to investigate the effectiveness of the joint element.

Earthquake and vibration effects

Chapter three refers to the computational modelling of masonry structures subject to earthquake and vibration effects. After a general survey covering the effect of earthquake and vibration loads on civil engineering structures, the chapter then focuses on the modelling of the structure, the material and load simulation. Two case studies are included.

Chapter four studies the dynamic behaviour of masonry bell towers. Measurements of the transient response during full-circle ringing of a single heavy bell gave the natural frequency, mode shape, damping, and peak response for each tower. Finite element analyses of the towers for frequency, mode shape and transient response correlated well with the observed behaviour. Very large factors of safety were found in the bell towers.

Settlement

Chapter five describes the development and use of a complex three-dimensional finite element model to study the effect of constructing a tunnel beneath an existing masonry building. Results are presented for simple arrangements of masonry facades as well as more complex buildings for which field data are available.

Fire

Chapter six provides insight into factors affecting the thermo-structural behaviour of masonry firewalls. The elevated temperature material properties of some masonry materials are discussed. This has facilitated a greater understanding of the structural response of masonry in high temperature environments. A computational model has been used to successfully simulate the experimental data from fire testing of masonry walls.

Historic buildings

Chapter seven applies discontinuous deformation analysis, within the context of the computational modelling, to the assessment of masonry arch bridges. The method was tested on a series of benchmark problems related to the stability of a masonry arch under its own weight. The analysis predictions were compared with nonlinear finite element analysis and discrete element analysis predictions. Satisfactory comparisons

of failure mode and formation of hinges were obtained.

Chapter eight reviews the basic problems associated with the computational modelling of masonry arches. The chapter discusses the basic characteristics of masonry materials and describes the development of a 'rigid block' mechanism method of analysis, which allows estimates of the ultimate load carrying capacity of arches to be obtained. As not all constituent blocks in a masonry arch are rigid, issues relevant to the non-linear elastic methods of analysis are also discussed.

Chapter nine looks at the conservation and rehabilitation of historic masonry structures and uses computational modelling to study the safety and stability of structural elements in old "difficult" masonry. The results show that masonry structures can reach unpredictable limit states. Furthermore, every technological and structural detail must be taken into account, and with computational modelling the results of a variety of different assumed structural models and analysis methods have to be compared with each other.

Chapter ten considers computational techniques for structural assessment of historic masonry structures and focuses on establishing feasible states of equilibrium that encourage interaction between the engineer and the computer. The computational models are based on finite element concepts developed with characteristics relating to equilibrium elements. The techniques involve the determination of thrust lines for skeletal structures using spreadsheets, the optimization of general thrust lines by limit analyses and the use of finite element models that can simulate cracking. The techniques are illustrated by case studies using historic structures.

My thanks go to my family for their support, to the chapter authors for their contributions and to Saxe-Coburg Publications for their help and guidance especially Barry Topping, Jelle Muylle, and Rosemary Brodie.

John W. Bull