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Preface

Domain decomposition methods are very efficient for computing the solution of large
scale problems in parallel. These methods mainly consist of splitting the global
domain into several sub-domains and computing the solution on the global domain
through the resolution of the problem associated with each sub-domains. Because the
aspect ratio of the subdomains and the shape of the interface between the subdomains
have a strong influence on the convergence of domain decomposition methods, it is
interesting to collect mesh partitioning techniques and domain decomposition meth-
ods in the same book. In this manuscript, mesh partitioning techniques and domain
decomposition methods are presented in thirteen chapters. Each chapter, written by
different authors, presents a state-of-the-art review of some well known methods, tech-
niques and algorithms. A bibliography is included at the end of each chapter.

The first chapter authored by R. Baiios Navarro and C. Gil focuses on describing
the main methods for mesh and graph partitioning. The goal of mesh partitioning is
to divide the set of elements of a mesh into a certain number of parts such that the
imbalance between domains and the number of elements sharing common faces are
both minimised. Graph partitioning algorithms can be used to satisfy these conditions
by first modelling the mesh by a graph, and then partitioning it into several sub-graphs
which represent the mesh decomposition. This chapter provides a description of this
problem and the current state-of-the-art in mesh and graph partitioning, including new
approaches based on multi-constraint and multi-objective optimisation.

The second chapter by C. Walshaw and M. Cross gives an overview of the research
into graph-partitioning, with particular reference to JOSTLE, the parallel, multilevel
software package, available from the University of Greenwich. Recent years, particu-
larly since 1995, have seen major advances in this field and one of the key innovations,
the multilevel paradigm, which proved to be so successful for partitioning, has been
extended to many other areas as a metaheuristic. JOSTLE has been an important part
of this development and so, after discussing its core algorithms in the context of mul-
tilevel refinement, the authors go on to highlight some of the key research issues it has
been used to address. They also demonstrate the flexibility of the multilevel paradigm
by outlining some enhancements such as multiphase mesh-partitioning, heterogeneous
mapping and partitioning to optimise subdomain shape.
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The third chapter by F. Magouleés and R. Putanowicz consists of an introduction
to the visualisation of distributed finite element data and graph partitioning with VTK
- the Visualisation ToolKit library. VTK is a software system for computer graphics,
visualisation and image processing. The chapter presents complex data file visualiza-
tion with VTK and explains how to program important functionalities such as drawing
a mesh, labelling points, labelling cells, colour bar, saving to a file, and so on. The au-
thors investigate the case of unstructured finite element mesh partitioning and provide
programming methodology to the reader. Detailed examples written in the scripting
language Tcl with calls to the VTK library are clearly described.

The chapter of F. Magoules and F.-X. Roux discusses the basis of substructur-
ing methods and the most classical domain decomposition methods in an homoge-
nous formulation. Theory, algorithms and implementation details of each method are
presented to the reader. The parallel finite element matrix forming based on sub-
structuring is first introduced. Then the parallel iterative solution of the associated
linear system is presented. Direct methods with parallel matrix factorisation based on
substructuring are then detailed. Finally, several domain decomposition methods in-
cluding the Schur complement method, the Dual Schur complement method, the FETI
method and the FETI-H method are successively described.

The chapter authored by G.P. Nikishkov discusses basic issues of the domain de-
composition method for parallel finite element analysis. An algorithm of domain par-
titioning based on a graph labelling scheme is presented. First, the domain decompo-
sition method with a direct LDU equation solver is considered. It is shown that load
balancing for subdomain assembly and condensation can be achieved by expressing
subdomain operation counts through their element numbers and by solving the non-
linear equation system. Next, a domain decomposition method with an iterative solver
is described. It is then demonstrated that efficiency of the parallel preconditioned con-
jugate gradient solver for decomposed finite element problems can be improved by
overlapping communication and computation.

The chapter of J. Kruis reviews the dual-primal finite element tearing and inter-
connecting (FETI-DP) method, a very powerful and general non-overlapping domain
decomposition method. Firstly, the basic ideas and assumptions are summarised and
discussed. Then, all necessary equations, matrices and vectors are defined. The chap-
ter also contains a simple one-dimensional example of heat transfer solved by the
FETI-DP method which clarifies the reviewed topic. Finally, numerical examples
solved in parallel on a cluster of PCs are summarised.

In the chapter authored by M. Sarkis and D. Szyld nonsymmetric and indefinite
linear systems arising from differential equations are studied. The interplay between
minimum residual iterative methods and a general theoretical framework for con-
structing and analysing two-level overlapping additive Schwarz techniques for these

Xii



systems is presented in a step by step manner. The chapter discusses the relation
between Euclidean and energy norm minimum residual methods, with right and left
preconditioners, and it culminates in the theoretical justification for the practical use
of Euclidean norm minimisation methods. These theoretical developments are illus-
trated with numerical experiments.

The next chapter authored by L. Giraud and R.S. Tuminaro is devoted to an al-
gebraic description of most well-known domain decomposition preconditioners for
the parallel solution of large linear systems arising from the discretisation of partial
differential equations. These preconditioners are presented for approaches based on
mesh-splitting or matrix partitioning. Computer science concerns for their implemen-
tations on parallel computers are discussed and numerical performance is reported.

The chapter authored by F. Magoules investigates three dimensional optimised
Schwarz methods without overlap for predicting transmission loss in mufflers and si-
lencers. Optimised Schwarz methods are very efficient iterative algorithms for the
parallel solution of computational mechanics problems. These methods are similar to
the classical Schwarz methods, but they use absorbing interface conditions between
the sub-domains. These interface conditions are then optimized for efficiency and lead
to a fast and robust convergence behaviour of the iterative algorithm. A wide range
of optimisation techniques has been proposed and developed for the literature in the
two dimensional case. This chapter presents the extension of the optimised Schwarz
methods to the three-dimensional case and applies these techniques to realistic indus-
trial problems for the prediction of transmission loss in mufflers and silencers.

The chapter authored by T. Knopp, G. Lube and G. Rapin discusses recent devel-
opments of domain decomposition methods for linearised incompressible flow prob-
lems based on the Stokes or Oseen model. First, a critical review of the literature on
these techniques is presented. Then the authors describe a non-overlapping method
with interface conditions of Robin type in more detail. They present available con-
vergence results. Moreover, they discuss the design of parameters in the interface
conditions between adjacent subdomains which allow a remarkable acceleration of
convergence of the method. Finally, a typical application of the latter method to a
complex model is presented. It is shown that domain decomposition techniques are
mandatory for the numerical simulation of large scale problems like indoor air flows.

The chapter of F. Hiilsemann introduces the Aitken-Schwarz algorithm, which is
an acceleration technique for overlapping Schwarz domain decomposition methods
that was introduced by M. Garbey and D. Tromeur-Dervout at the beginning of the
decade. Combining, under certain circumstances, low communication requirements
with fast convergence, the Aitken-Schwarz method is particularly well suited for meta-
computing settings in which communication between different computing sites has to
be kept to a minimum. This chapter covers the derivation of the method, an assessment

Xiii



of its computational complexity, an extension to grids with a certain type of refinement
and finally provides numerical examples.

The chapter of L. Champaney and D. Dureisseix discusses a mixed domain decom-
position in the field of structural mechanics. This method, initiated by P. Ladeveze,
was originally developed within the framework of the LArge Time INcrement method.
For structural simulations, such an approach is particularly useful for non univoque
constitutive relations on interfaces, such as contact with or without friction. A mul-
tilevel version with a strong relationship to homogenisation is also described, and
significant application examples are presented and discussed for different situations.

The chapter of C. Lacour is dedicated to the study, in the context of domain de-
composition, of the mortar element method approach for solving fourth-order elliptic
problems discretised by a non conforming finite element, discrete Kirchhoff triangles.
To reduce the computation cost, a decomposition of the whole domain into non over-
lapping subdomains is introduced. The discretisation relies on the variational formu-
lation of the continuous problem, and is, in general, nonconforming. There are some
mathematical difficulties for the resolution of these kinds of problems when finite ele-
ment discretisation is used. In the beginning of the chapter, the spaces of approxima-
tion and the decomposed discrete problem are defined. Since the main difficulty in this
formulation is to verify some properties of the associated discrete bilinear form, one
part of the chapter deals with this difficulty. The second part of the chapter deals with
the uniform continuity (independent from the discretisation parameter) of the discrete
bilinear form. The remaining part of the chapter contains a mathematical analysis of
the method with optimal error estimates.

Naturally, the present book cannot provide a complete record of the many ap-
proaches, applications, features, and schemes related to mesh partitioning techniques
and domain decomposition methods. However, it does provide an excellent tutorial of
the most well known methods used in academia and in industry. This book will be of
interest to engineers, computer scientists and applied mathematicians.

The editor wishes to thank the authors for their willingness to contribute to this
edited book dedicated to mesh partitioning techniques and domain decomposition
methods.

Frédéric Magoules

Applied Mathematics and Systems Laboratory
Ecole Centrale Paris, Grande Voie des Vignes
92295 Chatenay-Malabry Cedex, France
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