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Preface

The computation of acoustic phenomena is regarded today as one of the most chal-
lenging in scientific computation. This field has been an area of active research for
decades. A major current difficulty lies in the effective treatment of unbounded do-
mains by standard domain-based methods. Finite element methods cannot directly
handle such configurations in an effective way. An artificial boundary that truncates
the unbounded domain is used to form a bounded computational domain. Special
techniques are then required to reduce the spurious reflection of waves that impinge
on this artificial boundary, including infinite elements, boundary element, etc. Addi-
tional techniques enable an increase in the accuracy of the numerical schemes and the
computational efficiency as well as the robustness of the methods. In this manuscript,
computational methods for acoustics problems are presented in eleven chapters. Each
chapter, written by different authors, presents a state of the art of well established or
innovative methods, techniques or algorithms. A large bibliography is included at the
end of each chapter.

The chapter authored by A. Bendali and M. Fares presents some new techniques,
specially adapted to high performance computing, for solving acoustic scattering prob-
lems involving a bounded zone filled by a heterogeneous medium. The discretization
in this zone is carried out by using a standard finite element method. The rest of the
computational domain is dealt with by using a boundary integral equation. The final
linear system resulting from the coupling of two solution procedures is partly sparse
and partly dense. Serious difficulties arise when the solution has to be tackled on a
parallel platform. The authors start by presenting a condensed but systematic way
to obtain the most used boundary integral equations for acoustic scattering problems.
Then, they show how the non overlapping domain decomposition methods, usually
used for the Helmholtz equation, can be used to overcome the difficulties induced by
the coupling. They finally present an efficient procedure, which requires the solution
of only a small linear system of finite element equations at each iteration, to solve
the scattering problem. It is mainly based on the utilization of a non overlapping do-
main decomposition method, but this is in the context of a nodal finite element method
with appropriate treatment of the nodes being shared by more than two sub-domains.
Numerical experiments illustrate the methods presented.

The chapter authored by J. Astley presents the infinite element concept for acoustic
problems. Infinite elements were first proposed in the 1970s and 80s for the propa-
gation of surface waves on water, but were not developed specifically for acoustics
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until the 1990s. They are now widely used and are particularly attractive for inclusion
in commercial finite element codes since they largely preserve the structure of con-
ventional finite element models. They are able to act as a high order non-reflecting
boundary condition at the outer boundary of a truncated finite element model for an
exterior problem, while also predicting directly the far field solution. The method is
presented for mapped and for separable elements and for symmetric (unconjugated)
and non-symmetric (conjugated) formulations. Spherical and spheroidal formulations
are discussed. The accuracy and conditioning of the various formulations is investi-
gated in some detail and the extension to transient problems is outlined.

The chapter of M.N. Guddati, K.-W. Lim and A. Zahid presents Perfectly Matched
Discrete Layers (PMDL), a new method that combines the advantages of various ex-
isting methods for modeling unbounded domains. PMDL links the seemingly dis-
parate techniques of PML and local absorbing boundary conditions (ABCs). PMDL
is a special discretization of PML, which preserves the property of perfect impedance
matching even after discretization. Thus, PMDL is as flexible as PML and is in fact
an improvement. PMDL is also shown to be equivalent to rational approximation of
the exact impedance, thus inheriting the desirable accuracy properties of local ABCs.
Furthermore, unlike the existing methods, PMDL is applicable not only to rectangular
computational domains, but also to polygonal domains. The chapter contains the basic
derivation of PMDL as well as the illustration of its superior performance for acoustic
as well as elastic wave propagation problems.

The chapter authored by L.L. Thompson, P. Kunthong and S. Subbarayalu dis-
cusses original Time-Discontinuous Galerkin (TDG) methods which provide high-
order accuracy and stability for second-order hyperbolic systems including those gov-
erning structural dynamics and acoustics. Generalized gradients of residuals of the
governing equations are added to the standard TDG variational equation to provide
high-order accuracy and stability properties of the parent TDG method while gain-
ing significant reductions in computational cost comparable with standard second-
order accurate single-step/single-solve (SS/SS) time-stepping algorithms. Using this
stabilized framework, together with optimal design of temporal approximations and
time-scales, efficient multi-pass iterative solution algorithms are developed which:
maintain C- and L-stability; provide high-order accuracy in only two or three iterative
passes; and can easily be implemented in standard finite element codes. Alternative
decoupling strategies are also developed using spectral decomposition of the time ar-
rays to provide fast solves of space-time matrix equations resulting from the TDG
method which are ideal for parallel implementation. In addition, new space-time fi-
nite element strategies based on the TDG method are presented including high-order
accurate non-reflecting boundary conditions. The time-discontinuous Galerkin (TDG)
variational method is used to divide the time-interval into space-time slabs, the solu-
tion advances from one slab to the next. Within each global space-time slab subdi-
visions of multiple local space-time elements are allowed. This gives the flexibility
required to change local time-step size for different elements in the spatial mesh in
a truly local self-adaptive space-time methodology. By maintaining orthogonality of



the space-time mesh and pre-integrating analytically in the time-dimension through
each local element in the time-slab, an efficient yet robust adaptive method is obtained
which accommodates any standard spatial element without modifications. The re-
sulting technologies provide significant advances in accuracy, efficiency, and reliabil-
ity over standard time-stepping methods, especially for long-time simulations which
track response over large distances and long time intervals.

The chapter of E. Turkel surveys absorbing boundary conditions and iterative
methods for the numerical solution of the Helmholtz equation in unbounded regions.
For acoustic scattering around a body it is necessary to enclose the infinite region by
an artificial surface. One needs to set a boundary condition that absorbs outgoing
rays. The chapter discusses several approaches for such boundary conditions for var-
ious shapes of the artificial surface. After discretizing the total system one needs to
solve a large but sparse system that is neither positive nor Hermitian. For three di-
mensional problems or high frequencies one must use an iterative method, usually a
Krylov space method. To converge within a reasonable number of steps it is necessary
to precondition the system. A survey of different preconditioners is also presented in
this chapter.

The chapter authored by F. Magouleés and F.-X. Roux presents a general method-
ology to solve coupled fluid-structure problems with non-matching grids arising from
vibro-acoustics problems. The coupling is ensured through the boundary conditions
defined along the fluid-structure interface. Here the coupled quantities are integrated
over a set of quadrature points defined on the fluid-structure interface. This integra-
tion involves the computation of nodal values and interpolation at given Gauss points
which allows any hp-refinement. Several preconditioned sub-structuring methods and
domain decomposition preconditioning techniques are proposed. Implementation as-
pects of these methods are provided in details and validated on two vibro-acoustic
problems. Numerical results illustrate the efficiency, robustness and performance of
the proposed preconditioning techniques applied to the global coupled problem.

The chapter by K. Meerbergen on theory and numerical methods for eigenvalue
problems reviews the eigenvalue problems that arise in the analysis of vibrations. The
best known problem is the definite generalized eigenvalue problem of the finite ele-
ment discretization of the Helmholtz equation, which produces the eigenfrequencies
and eigenmodes. For this problem the Lanczos method is a success story and this
chapter discusses some aspects of the method without dwelling on implementation
details. When damping is present, the Helmholtz equation often becomes a quadratic
eigenvalue problem. The solution of this problem is still under investigation but good
progress has been made over the last decade. The author shows some particular fea-
tures of this problem and some differences with the definite generalized eigenvalue
problem.

The chapter of X. Antoine proposes a complete overview of the theoretical and nu-
merical developments related to the On-Surface Radiation Condition (OSRC) method
in computational acoustic scattering since its introduction in the middle of the 1980s.
This asymptotic technique tends to produce some approximate and fast numerical
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computations of scattered fields and far-field patterns for large wavenumbers and var-
ious boundary conditions. The proposed discussion follows the chronological devel-
opments and explains the strengths and future applications of the OSRC for prospect-
ing large scale problems. Numerical treatments are discussed in details for three-
dimensional problems using surface finite element methods. Finally, several appli-
cations are pointed out such as the construction of artificial boundary conditions and
generalized impedance boundary conditions, the development of well-posed and well-
conditioned new integral equations for scattering problems as well as preconditioning
techniques for integral equations by open structures.

Frequency response computations over a frequency range are relatively expensive
because a large number of linear systems has to be solved. The chapter of K. Meerber-
gen on fast frequency response function computation by model reduction presents the
application of Krylov methods for this purpose. They build rational approximations to
the frequency response as a function of the frequency. In general, modal superposition
often is the fastest method, but the method is not always applicable, for example the
case of damped problems or in the presence of infinite elements. These Krylov meth-
ods are relatively new to the community concerned with computational acoustics, but
they are very reliable and show excellent speed-ups to the direct approach.

The chapter authored by R. Djellouli discusses an original computational method-
ology for solving inverse acoustic scattering problems. The problem considered here
is an inverse obstacle problem where the objective is to determine the shape of an
obstacle, or a part of this shape, from the knowledge of some scattered far-field pat-
terns, and assuming certain characteristics of the surface of the obstacle. Although
this problem is one of the simplest problem arising in the inverse scattering field, the
issues and ideas discussed here are relevant to many applications such as sonar, radar,
geophysical exploration, medical imaging and nondestructive testing. The proposed
solution methodology is a regularized iterative-based method, that distinguishes it-
self from similar Newton-type procedures by a sensitivity-based and frequency-aware
multi-stage solution strategy, a computationally efficient usage of the exact sensi-
tivities of the far-field pattern to the specified shape parameters, and a numerically
scalable domain decomposition method for the fast solution in a frequency band of
three-dimensional direct acoustic scattering problems.

The chapter authored by O. von Estorff, M. Markiewicz, and O. Zaleski discusses
a number of representative examples where results obtained using the finite element
and boundary element computations are compared to measured values. The consid-
ered systems are of different complexity levels and include academic as well as rather
sophisticated industrial examples. The contribution covers coupled and uncoupled
radiation problems, followed by two transmission loss investigations. The major ob-
jective is the validation of the models and to show their limitations and accuracy.
Moreover, the authors try to share parts of their wide experience with measurements
and computation in the fields of acoustics and vibro-acoustics. The chapter is con-
cluded with a number of essential hints and remarks to provide some help for possible
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validation activities planned by the reader.

Naturally, the present book cannot provide a complete record of the many ap-
proaches, applications, features, and schemes related to computational methods for
acoustics problems. However, it does provide a good tutorial on the most important
methods used for academic and industrial research. This book will be of interest to en-
gineers, computer scientists and applied mathematicians. The editor wishes to thank
the authors for their willingness to contribute to this edited book dedicated to compu-
tational methods for acoustics problems.

Frédéric Magoules

Applied Mathematics and Systems Laboratory
Ecole Centrale Paris, Grande Voie des Vignes
92295 Chatenay-Malabry Cedex
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