COMPUTATIONAL MODELLING OF MASONRY, BRICKWORK AND BLOCKWORK STRUCTURES
Also available from Saxe-Coburg Publications

Derivational Analogy Based Structural Design
B. Kumar and B. Raphael

3D Modeling with ACIS
J. Corney and T. Lim

Strength of Materials: An Undergraduate Text
G.M. Seed

Innovative Computational Methods for Structural Mechanics
Edited by: M. Papadrakakis and B.H.V. Topping

Parallel and Distributed Processing for Computational Mechanics: Systems and Tools
Edited by: B.H.V. Topping

High Performance Computing for Computational Mechanics
Edited by: B.H.V. Topping and L. Lammer

Parallel Finite Element Computations
B.H.V. Topping and A.I. Khan
COMPUTATIONAL MODELLING OF MASONRY, BRICKWORK AND BLOCKWORK STRUCTURES

Edited by
J.W. Bull
Contents

Preface vii

1 Damage and Failure Models 1
E. Papa
1.1 Introduction ... 1
1.2 Heterogeneous models 2
1.3 Homogeneous models 3
1.4 An elastic-plastic damage model for masonry 5
 1.4.1 Damage evolution law 8
 1.4.2 Numerical analyses 10
1.5 A unilateral damage model based on a homogenisation procedure . 13
 1.5.1 The damage model for bricks and mortar 14
 1.5.2 The homogenisation procedure 18
 1.5.3 Numerical analyses 19
1.6 Conclusions ... 21

2 Formulation of Elastic-plastic Joint Elements and their Application to Practical Structures 27
T. Aoki
2.1 Introduction ... 27
2.2 The Formulation of Elastic-plastic Joint Elements (Model I: Truss members breaking in tension) 28
 2.2.1 Angle φ_0 and Stiffness of E_{sd} and E_{sv} 30
 2.2.2 Yielding Condition for Plane Stress 32
 2.2.3 Formulation of Elastic-plastic Joint Element for the Finite Element Method 37
2.3 An Analysis of Plane Concrete Under Combined Stress (Model II: Joint elements for thin layers of mortar) 38
2.4 Slippage under a Footing 40
 2.4.1 Joint Elements for Soil (Model III: Mohr-Coulomb yielding condition) 40
 2.4.2 Analysis of Slippage Occurs under a Footing 43
2.5 Conclusion .. 47
3 Earthquake and Vibration Effects

C.A. Syrmakezis and A.A. Sophocleous

3.1 Introduction ... 53
3.2 Masonry structures 55
3.3 Methods of analysis 57
3.4 Masonry computational models 58
3.5 Structural Simulations 59
3.6 Simulation of Actions 59
3.7 Simulation of Materials Characteristics 60
 3.7.1 General .. 60
 3.7.2 Modulus of elasticity - Poisson ratio 60
 3.7.3 Shear Modulus 61
 3.7.4 Compressive - Tensile Strength 61
 3.7.5 Failure criterion 62
3.8 Applications ... 65
 3.8.1 Description of the structures 66
 3.8.2 Structural simulation of the structures 66
 3.8.3 Simulation of actions 67
 3.8.4 Material simulation 68
 3.8.5 Analysis results 68
 3.8.6 Failure analysis results 68
 3.8.7 Repairing and/or strengthening decisions 71
 3.8.8 Reanalysis .. 72
 3.8.9 Final Failure Analysis 75
3.9 Conclusions ... 75

4 The Dynamics of Masonry Bell Towers

A.R. Selby and J.M. Wilson

4.1 Introduction ... 79
4.2 Tower construction, bell frames and bells 81
4.3 Forces from a swinging bell 84
4.4 Measured Tower Response 89
4.5 Computational modelling 93
 4.5.1 Timoshenko beam models 95
 4.5.2 3-D finite element modelling 97
 4.5.3 Durham Cathedral and Newcastle Cathedral 100
 4.5.4 Summary of FE Analyses 102
4.6 Serviceability and ultimate limit conditions 103
 4.6.1 Serviceability 103
 4.6.2 Ultimate limits and factors of safety 105
4.7 Conclusions ... 106
4.8 Acknowledgements 106
5 Settlement Induced Damage to Masonry Buildings

C. Augarde

5.1 Introduction ... 110
5.2 Current procedures used to assess settlement damage due to tunnelling 110
 5.2.1 Numerical models of the tunnelling settlement problem 111
 5.2.2 Modelling masonry 112
5.3 A three-dimensional finite element model 113
 5.3.1 Simulation of tunnelling 113
 5.3.2 Modelling a building 114
 5.3.3 Choice of masonry model 114
 5.3.4 Hardware & software 115
5.4 An elastic no-tension material model for masonry 115
 5.4.1 The basic formulation 115
 5.4.2 Validation of the masonry formulation 117
 5.4.3 Implementation and numerical stability 121
 5.4.4 Post-processing masonry data 122
5.5 Two-dimensional studies of façades 123
 5.5.1 Façade types analysed 123
 5.5.2 Analysis procedure 123
 5.5.3 Results for a plain façade 125
 5.5.4 Results for a façade with openings 127
 5.5.5 Discussion .. 128
5.6 The three-dimensional model of tunnelling 129
 5.6.1 Example analyses of a simple building 129
 5.6.2 Results ... 131
 5.6.3 Modelling the effects of shaft construction on an 18th century stone clad church, Maddox Street, London 134
 5.6.4 Results ... 136
 5.6.5 Discussion .. 139
5.7 Concluding remarks .. 140
5.8 Acknowledgements ... 140

6 Modelling and Behaviour of Masonry Walls in Fire

M. O’Gara

6.1 Introduction .. 143
6.2 Thermo-Structural Behaviour of Masonry Walls in Fire 145
 6.2.1 Overview .. 145
 6.2.2 Thermal Bowing ... 145
 6.2.3 Masonry Material Properties 146
 6.2.4 Wall Geometry .. 147
 6.2.5 Boundary Conditions 147
 6.2.6 Applied loading ... 148
 6.2.7 Moisture effects and material spalling 150
6.3 Mechanical Material Properties at Elevated Temperature 150
9 Numerical Analysis of Old Masonry Buildings 221
F. Genna and P. Ronca
9.1 Introduction ... 221
9.2 Issues in the numerical modelling of old masonry 224
 9.2.1 Geometry of the numerical model 224
 9.2.2 Discrete numerical model ... 224
 9.2.3 Loading and boundary conditions 225
 9.2.4 Choice of formulation and finite elements 225
 9.2.5 Choice of the constitutive model 226
 9.2.6 Choice of the material parameters 229
 9.2.7 Other issues .. 230
9.3 Analysis of masonry walls ... 231
 9.3.1 A wall of the San Faustino cloister in Brescia, Italy 231
 9.3.2 A wall of the church “Chiesa della Disciplina” in Verolanuova, Italy ... 242
9.4 Analysis of arches and vaults .. 251
 9.4.1 Influence of structural details on the computational model ... 252
 9.4.2 The computational models of the vault structural details ... 252
 9.4.3 Elastic analysis of a cloister vault with frescoes of the XVIII century ... 256
 9.4.4 Limit analysis of vaulted masonry structures subjected to both vertical and horizontal actions 258
 9.4.5 Limit analysis of a supporting arch of the Basilica Superiore of Assisi, Italy ... 262
9.5 Conclusion ... 266

10 Historic Masonry Structures 273
E.A.W. Maunder and W.J. Harvey
10.1 Introduction .. 273
10.2 Structural Philosophy .. 275
10.3 Computational Techniques ... 276
 10.3.1 A Review ... 277
 10.3.2 Thrust lines in skeletal forms 278
 10.3.3 Thrust lines in continuous forms 284
10.4 Case studies of historical masonry structures 292
 10.4.1 Bridgemill Bridge .. 292
 10.4.2 Horrabridge ... 293
 10.4.3 Exeter Cathedral .. 298
 10.4.4 Wells Cathedral .. 305
10.5 Closure ... 307

Index 312

Author Biographies 319
Preface

This book is aimed at: design engineers who need to know the latest advances in masonry, brickwork and blockwork; architects wanting to develop building shape still further; engineering consultants who must ensure designs are safe; academics who research into masonry and postgraduates approaching masonry for research purposes.

The use of masonry, brickwork and blockwork for building and civil engineering structures has a long history going back to ancient times. For many hundreds of years, the main masonry material has been stone, with clay becoming the main brickwork material. With the introduction of other materials including concrete, the term blockwork is now also used.

As masonry and brickwork structures have a long history, design standards have generally accepted the empirical design requirements that place 'natural' height restrictions on masonry and brickwork structures. Further, brickwork and blockwork are often still seen as just infill material for steel framed or reinforced concrete buildings.

With the advent of reinforcing or post tensioning brickwork, increasingly complex structures became a possibility. Further there is an increasing requirement to assess the strength of existing masonry structures and to determine the most suitable means of improving masonry performance.

Designers, engineers and research workers want to exploit masonry to its full potential. To determine how masonry reacts to extreme conditions, there is a need for the computational modelling of a whole range of masonry, brickwork and blockwork materials and structures, including the composite action of the brick/joint interface.

Although much of the information on masonry structures is available from publications in journals and at conferences, masonry research is widely scattered throughout the world. In recognition of this fact, the expert chapter authors in this book have been drawn together from around the world. Their up-to-date knowledge and expertise in masonry structures is drawn upon to determine the present state of the computational modelling of masonry, brickwork and blockwork structures and to point to future developments.

This book brings together a wide range of masonry, brickwork and blockwork disciplines and shows where computational modelling has been used successfully. The ten chapters have been divided into five topic areas: damage and failure models; vibration and earthquake effects; settlement; fire; and historic buildings. Each topic area can be described briefly as follows:
Damage and failure models
Chapter one reviews the literature regarding the homogeneous and heterogeneous con-
stitutive laws for masonry and describes two models based on damage mechanics. In
the first model, masonry is considered as a homogeneous, orthotropic material, but in
the second model the overall mechanical properties of masonry are determined based
on the properties of the components. The numerical results from the two models are
in good agreement with experimental data.

Chapter two considers the formulation of an elastic-plastic joint element to deter-
mine the structural behaviour and characteristics of masonry structures. The chapter
then goes on to investigate the effectiveness of the joint element.

Earthquake and vibration effects
Chapter three refers to the computational modelling of masonry structures subject
to earthquake and vibration effects. After a general survey covering the effect of
earthquake and vibration loads on civil engineering structures, the chapter then focuses
on the modelling of the structure, the material and load simulation. Two case studies
are included.

Chapter four studies the dynamic behaviour of masonry bell towers. Measure-
ments of the transient response during full-circle ringing of a single heavy bell gave
the natural frequency, mode shape, damping, and peak response for each tower. Finite
element analyses of the towers for frequency, mode shape and transient response cor-
related well with the observed behaviour. Very large factors of safety were found in
the bell towers.

Settlement
Chapter five describes the development and use of a complex three-dimensional finite
element model to study the effect of constructing a tunnel beneath an existing masonry
building. Results are presented for simple arrangements of masonry facades as well
as more complex buildings for which field data are available.

Fire
Chapter six provides insight into factors affecting the thermo-structural behaviour of
masonry firewalls. The elevated temperature material properties of some masonry
materials are discussed. This has facilitated a greater understanding of the structural
response of masonry in high temperature environments. A computational model has
been used to successfully simulate the experimental data from fire testing of masonry
walls.

Historic buildings
Chapter seven applies discontinuous deformation analysis, within the context of the
computational modelling, to the assessment of masonry arch bridges. The method was
tested on a series of benchmark problems related to the stability of a masonry arch
under its own weight. The analysis predictions were compared with nonlinear finite
element analysis and discrete element analysis predictions. Satisfactory comparisons
of failure mode and formation of hinges were obtained.

Chapter eight reviews the basic problems associated with the computational modelling of masonry arches. The chapter discusses the basic characteristics of masonry materials and describes the development of a ‘rigid block’ mechanism method of analysis, which allows estimates of the ultimate load carrying capacity of arches to be obtained. As not all constituent blocks in a masonry arch are rigid, issues relevant to the non-linear elastic methods of analysis are also discussed.

Chapter nine looks at the conservation and rehabilitation of historic masonry structures and uses computational modelling to study the safety and stability of structural elements in old “difficult” masonry. The results show that masonry structures can reach unpredictable limit states. Furthermore, every technological and structural detail must be taken into account, and with computational modelling the results of a variety of different assumed structural models and analysis methods have to be compared with each other.

Chapter ten considers computational techniques for structural assessment of historic masonry structures and focuses on establishing feasible states of equilibrium that encourage interaction between the engineer and the computer. The computational models are based on finite element concepts developed with characteristics relating to equilibrium elements. The techniques involve the determination of thrust lines for skeletal structures using spreadsheets, the optimization of general thrust lines by limit analyses and the use of finite element models that can simulate cracking. The techniques are illustrated by case studies using historic structures.

My thanks go to my family for their support, to the chapter authors for their contributions and to Saxe-Coburg Publications for their help and guidance especially Barry Topping, Jelle Muylle, and Rosemary Brodie.

John W. Bull