Computational & Technology Resources
an online resource for computational,
engineering & technology publications 

CivilComp Proceedings
ISSN 17593433 CCP: 86
PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON CIVIL, STRUCTURAL AND ENVIRONMENTAL ENGINEERING COMPUTING Edited by: B.H.V. Topping
Paper 141
Free Vibration of a Moving Timoshenko Beam using the Dynamic Stiffness Theory J.R. Banerjee and W.D. Gunawardana
School of Engineering and Mathematical Sciences, City University, London, United Kingdom J.R. Banerjee, W.D. Gunawardana, "Free Vibration of a Moving Timoshenko Beam using the Dynamic Stiffness Theory", in B.H.V. Topping, (Editor), "Proceedings of the Eleventh International Conference on Civil, Structural and Environmental Engineering Computing", CivilComp Press, Stirlingshire, UK, Paper 141, 2007. doi:10.4203/ccp.86.141
Keywords: moving beam, free vibration, Timoshenko beam, dynamic stiffness theory.
Summary
There are many engineering structures that are modelled as axially moving beams. Some typical examples include power transmission belt and chain drives, highspeed magnetic tapes, aerial cable tramways, band saws, pipe conveying fluids and many other technological devices. The free vibration analysis of axially moving beams has generally been carried out using the BernoulliEuler beam theory [1]. There are, however, one or two exceptions where relatively more advanced Timoshenko beam theory which includes the effects of shear deformation and rotatory inertia has been used [2,3]. A recent literature review suggests that the free vibration behaviour of a moving Timoshenko beam has neither thoroughly nor widely been investigated. No one appears to have used the dynamic stiffness theory. Of course, the effects of shear deformation and rotatory inertia on the free vibration behaviour of a nonmoving beam using the Timoshenko beam theory are well known and even included in text books. As for moving beams, these effects do not appear to be sufficiently well known. Clearly, the subject matter warrants a thorough and indepth investigation. The effects of shear deformation and rotatory inertia may possibly be more significant for moving beams as opposed to the stationary ones, and the analysis is particularly relevant when establishing the critical speed at which the beam experiences the divergence phenomenon when it ultimately becomes unstable. The purpose of this paper is to address this issue by developing the dynamic stiffness matrix of a moving Timoshenko beam and then applying it to study its free vibration characteristics.
For harmonic oscillation the equations obtained using Hamilton's principle [2,3] are solved and the expressions for the amplitudes of flexural displacement, section rotation, shear force and bending moment are obtained in terms of the arbitrary constants. Next by applying the boundary conditions, the constants are eliminated to form the frequency dependent dynamic stiffness matrix of the moving Timoshenko beam relating the amplitudes of loads to those of responses. Finally the dynamic stiffness matrix is used to compute the natural frequencies and mode shapes of a number of carefully chosen moving Timoshenko beam examples. This is achieved by applying the well known algorithm of Wittrick and Williams [4]. The effects of shear deformation and rotatory inertia and their subsequent influence on the critical moving speed are investigated and discussed for both simply supported and fixedfixed boundary conditions of the beam. References
purchase the fulltext of this paper (price £20)
go to the previous paper 
