Computational & Technology Resources
an online resource for computational,
engineering & technology publications
Civil-Comp Proceedings
ISSN 1759-3433
CCP: 26
Edited by: M. Papadrakakis and B.H.V. Topping
Paper XI.2

On Some Stochastic Eigenvalue Problems for Technical Applications

H. Grundmann, F. Duddeck and H. Waubke

Lehrstuhl für Baumechanik, Technical University of Munich, Germany

Full Bibliographic Reference for this paper
H. Grundmann, F. Duddeck, H. Waubke, "On Some Stochastic Eigenvalue Problems for Technical Applications", in M. Papadrakakis, B.H.V. Topping, (Editors), "Advances in Computational Mechanics", Civil-Comp Press, Edinburgh, UK, pp 361-367, 1994. doi:10.4203/ccp.26.11.2
In general the randomness of the system properties is by far less significant for the reliability of structures than the stochastic nature of the loading. But there exist some exceptions, for example systems subjected to a given harmonic excitation or the loss of stability of structures caused by given compressive loadings or caused by wind in the context of flutter. The named examples can be described by eigenvalue problems. The stability problem as well as the flutter problem are transcendental eigenvalue problems. It is possible however in reasonable simplification to substitute them by linear matrix eigenvalue problems, which are considered in this paper. A simple approach will be discussed, by which the stochastic properties of the lowest eigenvalues and the corresponding eigenvectors can be approximated. It is related to a Galerkin approach and it works with a description of the random fluctuations of the results by means of a Polynomial Chaos expansion.

Typical examples are considered to show the application of the procedure, the accuracy of which is compared for several cases with the results of a Monte Carlo simulation.

purchase the full-text of this paper (price £20)

go to the previous paper
go to the next paper
return to the table of contents
return to the book description
purchase this book (price £70 +P&P)