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P. Iványi and B.H.V Topping (Editors)
Civil-Comp Press, Stirlingshire, Scotland

Energy consumption evaluation of Blender’s image ren-
derer in HPC environment
M. JAROS, O. VYSOCKY, P. STRAKOS, M. SPETKO
IT4Innovations, VSB - Technical University of Ostrava, Czech Republic

Abstract

In our contribution we evaluate the energy consumption optimization of image rendering on
a typical architecture of an HPC system. We use the renderer CyclesPhi, which is our own
modified version of the Cycles renderer from the Blender 3D creation suite. CyclesPhi fits the
HPC environment in such a way that it runs as a client on one or multiple nodes, and efficiently
utilizes the cluster through optimal load balancing. In order to reduce the energy consumption
of a scene rendering we used MERIC, our own developed library for HPC application profil-
ing and runtime tuning. MERIC searches for the configuration of hardware, system software,
and application parameters which can provide minimal energy consumption for each manu-
ally instrumented region inside the analysed application. Thusly we instrumented the Blender
client and analysed the rendering task. On Haswell architecture (two Intel Xeon E5-2680v3
processors per node) we were able to reduce energy consumption by 9% while extending the
rendering time by 21%. If a less energy conservative setting was applied, we would save 4.8%
of energy whilest only prolonging the rendering time by 4%.

Keywords: rendering, Blender Cycles, energy efficient computing, MERIC, high perfor-
mance computing

1 Introduction

Image rendering is an example of a task that can easily utilise a whole cluster, and runs for a
very long time. Therefore it consumes much energy. Even minimal power reduction can result
in significant energy and money savings, as well as reduced carbon footprint.

So far the main focus concerning the energy consumption in image rendering has concen-
trated mainly on mobile platforms. The energy consumption of computationally extensive
tasks is crucial on mobile devices because it directly influences battery life. One example of a
possible solution to this phenomena is presented in [1]. The authors try to find the optimal ren-
dering setting to conserve maximum energy whilst also retaining maximal visual quality. The
method through which they reach this objective sets up the Pareto frontier and solves the task
as optimisation problem. Although it is a very reasonable way of achieving the goal of saving
power, it is merely a compromise between power savings and lowering of visual quality.
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There are several related strains of research in energy efficient High Performance Comput-
ing (HPC) working on reduction of system resources while conserving the application’s time
to solution. Haidar et al [2] use PAPI power capping, and Kimura et al [3] and the Adagio
system [4] use dynamic voltage scaling. However, the consumed energy might be reduced
despite extending the application runtime. For such a case we cannot consider only the en-
ergy consumed by the CPUs, but must measure the consumption of the whole node. We put
our focus on image rendering, and in comparison with the majority of available solutions in
mobile devices, we elaborate on changing the specific hardware settings of a cluster. We aim
to change the CPU frequencies and consequently influence both rendering time and energy
consumption. By dealing with this specific setting we can retain maximal image quality and
reduce power consumption.

2 Extension of Blender Cycles renderer

Blender is an open-source 3D software that ranges from creation of 3D scenes to their photo-
realistic visualizations [5]. It is equipped with several rendering engines, but the one that is
mainly used for production of high quality results is Cycles. It is a path-tracing based engine
that supports both off-line and interactive rendering.

Blender can be extended with a variety of plug-ins. These are usually written as a combi-
nation of C++ and Python code. C++ is used to write computationally extensive parts, while
Python is used mainly for GUI implementation. In our contribution we have used an extended
version of the Cycles engine in the form of Blender’s plug-in to support remote utilisation
of HPC (High Performance Computing) resources and to allow optimization of the energy
consumption of the rendering task.

We call our rendering plug-in CyclesPhi [6]. It was originally developed to utilise HPC
clusters that are equipped with regular CPU nodes and also with Intel Xeon Phi accelerated
nodes. By such extension of the original Cycles engine we can achieve full utilisation of a
typical HPC cluster.

The MPI version of CyclesPhi was introduced in [7]. In the current version we have added
support for communication over the SSH protocol using socket technology. It allows remote
off-line or interactive rendering from a personal computer. The CyclesPhi runs as a Blender
client and its communication concept is depicted in Figure 1, whereas in Figure 2 the type
of data being sent is shown. Using socket communication, we can send a scene directly to a
cluster or we can save it to a file. This file also contains data from the scene preprocessing
before the rendering.

3 Energy measurement

In order to reduce energy consumption of a scene rendering we have used MERIC library [8]
developed at IT4Innovations for HPC application resources consumption evaluation. It can
also tune selected hardware parameters during the application runtime. The library applies
a READEX project [9] approach by searching for the optimal configuration of hardware and
application parameters for separate regions inside an application, based on manual instrumen-
tation. In the same way we manually instrumented the blender client to analyse the rendering
part.
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Figure 1: Concept of a client and a server utilizing one compute node of a cluster.

The library allows for Dynamic Voltage and Frequency Scaling (DVFS) and Uncore Fre-
quency Scaling (UFS). Uncore frequency refers to frequency of subsystems in the physical
processor package that are shared by multiple processor cores e.g., L3 cache or on-chip ring
interconnect. In this manner we can control the separate parts of the chip more effectively
in comparison to automated power capping [2]. The importance of UFS is presented in the
following section.

As we proposed, we are not focusing on persistent application runtime with reduced hard-
ware resources, so we do not consider only the CPUs energy consumption, but evaluate the
whole node.

E = energycpu + baseline ∗ time (1)

The energy measurement of the whole node is defined be Equation 1, where energy con-
sumed by CPUs is measured from Intel Running Average Power Limit (RAPL) counters, and
the power baseline is defined from data provided by the Intelligent Platform Management In-
terface (IPMI). For evaluated Haswell architecture the power baseline is specified in Table 1.

For the energy measurements we divided the rendering task into three specific regions.
We mark them as LOAD, RENDER and SAVE. They are self explanatory, LOAD and SAVE
provide functionality for getting data to and from the rendering task while the RENDER region
consists of the loop for path-tracing over each pixel. The load balancing within the RENDER
region is improved by the OpenMP scheduler (see Figure 3). The size of x0 and y0 was 1 in
all cases.

In our energy measurements we have used only the RENDER region, because the loading
and saving of data requires almost no time compared to rendering.
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Figure 2: Communicated date within rendering task in Blender.

Architecture Haswell
Baseline [W] 70

TDP [W] 240 (2x E5-2680v3)
Total power [W] 310

Table 1: Baseline and Thermal Design Power (TDP) for Haswell Intel platforms measured by
IPMI.

We have also skipped rendering over more than one node, since rendering has a linear
scalability, see Figure 4. Therefore to obtain the approximate energy consumption of the
whole cluster we can multiply the consumption of one node by the total number of cluster
nodes.

4 Experiment

For the experiment we have selected four different scenes of different complexity. Scene
previews in high sample rates are depicted in Figure 5. Detailed descriptions of chosen scenes
are in Table 2. Relatively small sample rates during the measurements of energy consumption
are used to set the average rendering time around 60 seconds per one HW configuration. The
detailed measurement contains about 90 HW combinations for one scene.

4.1 Energy consumption measurement and optimization

Analysis of the energy consumption was done on IT4Innovations’ Salomon cluster [10], which
is based on nodes with two Intel Xeon E5-2680v3 (Haswell-EP) processors with 12 cores each.

The advantage of the Haswell processor in terms of our analysis is the availability of DVFS
(core freq.) and UFS (uncore freq.). Another benefit is the wide frequency range of both.
Intel Haswell uncore frequency can be set in the range of 1.2–3.0 GHz and core frequency
in the range of 1.2–2.5 GHz. For the evaluated Haswell processor there is a CPU core turbo
frequency available. CPUs in general have a wide range for the turbo frequency (Haswell 2.5–

4



Figure 3: Image distribution using OpenMP on multiple threads of a compute node.

Figure 4: The multi-node scalability of the rendering engine. The test was made on the Class-
room scene with 1200 samples using 2× Haswell with 24 OpenMP threads.

3.3 GHz) because of the rapid temperature rise when running at the available maximum, and
the governor reducing the frequency to reduce the chip temperature accordingly.

In our tests we measured the hardware performance counters using PAPI and we watched
the PAPI TOT CYC counter, which counts the number of CPU cycles. According to this
counter, the average CPU frequency of a Haswell processor when in turbo mode was 2.79 GHz.
In the graphs and heat-maps that follow the 2.8 GHz CPU core frequency represents Haswell’s
turbo frequency.

In Table 3 we show the default and optimal hardware settings to reach the minimum energy
consumption and its impact on rendering time. Reducing the number of OpenMP threads
would not have a positive impact on energy consumption in the case of a linearly scaling
application because it prolongs the application runtime accordingly. Therefore all presented
results are using all available threads (24 threads/node). We were able to gain 7.81–9.08 %
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Figure 5: Test scenes - The Daily Dweebs by the Blender Foundation , Classroom by
Christophe Seux, Fishy Cat by Manu Jarvinen, and Pabellon Barcelona by Claudio Andres
(from left to right and top to bottom).

Scene Dweebs Classroom Fishy Cat Pabellon B.
Frame 150 1 1 1
Verts 4643383 127812 218761 22432
Faces 4160837 126231 326855 19910
Tris 8066390 242474 436998 40189

Objects 239 301 27 102
Lamps 9 4 2 1
Mem 6738.78MB 797.11MB 908.02MB 303.13MB

Resolution 1920x1080 1920x1080 1002x460 1280x720
Samples 12 6 3 7

Table 2: Description of evaluated scenes.

energy savings when using 1.6 or 1.8 GHz uncore and 2.4 or 2.5 GHz core CPU frequency.
The runtime in such a scenario was extended by approximately 16.19–22.51 %.

We have selected the Classroom scene that provided maximal energy savings to show in
detail the impact of the applied hardware configuration. The influence of reduced resources
on the runtime is shown in Figure 6 while the influence on the consumed energy is depicted in
Figure 7.

Based on our findings we realize that extending the runtime by about 20 % might be con-
sidered unacceptable in some cases, hence one may set a configuration that does not effect
the runtime as much. All other available configurations with the respective impact on energy
consumption and runtime can be read from the Table 4 and Table 5. From the values in the
aforementioned tables it is obvious that the highest impact on the rendering runtime the the
CPU core turbo frequency. So obviously ignoring DVFS and using UFS only is a solution for
how to gain about 4.8 % energy savings whilst only extending the runtime by a more accept-
able 4 %.

So far the presented results have been measured on nodes with a Direct Liquid Cooling
(DLC) system, however the Salomon cluster also has Haswell nodes with an Air Cooling (AC)
system. The cooling system does not effect the rendering runtime, but it has a distinct impact
on the energy consumption of the node. The systems in the default configuration and with
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Scene Default Best HW Optimized
run configuration run

Classroom 18698.64 J 1.6 GHz (UnCF), 17000.55 J (9.08 %)
65.38 s 2.4 GHz (CF) 79.06 s (-20.93 %)

Dweebs 18541.11 J 1.8 GHz (UnCF), 17093.31 J (7.81 %)
64.03 s 2.4 GHz (CF) 77.80 s (-21.51 %)

Fishy Cat 18210.75 J 1.8 GHz (UnCF), 16671.43 J (8.45 %)
63.23 s 2.5 GHz (CF) 73.47 s (-16.19 %)

Pabellon B. 17067.56 J 1.8 GHz (UnCF), 15731.53 J (7.83 %)
60.09 s 2.4 GHz (CF) 73.02 s (-21.51 %)

Table 3: Overall application evaluation of different scenes on compute node with Haswell
processors from the energy consumption point of view.

uncore [GHz]
core [GHz] 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
1.2 −132.8 −130.6 −129.4 −128.2 −127 −126.3 −125.7 −125.6 −124.8 −124.7
1.4 −101.8 −99.4 −97.9 −96.7 −96 −95.2 −94.3 −94.2 −93.7 −93.2
1.6 −78.8 −76.5 −74.8 −73.9 −72.7 −71.7 −71.2 −70.6 −70.2 −69.9
1.8 −61 −58.6 −56.9 −55.2 −54.5 −53.4 −52.9 −52.5 −52 −51.7
2 −46.9 −44.5 −42.2 −41 −39.7 −39.3 −38.4 −37.9 −37.6 −37.1
2.2 −35.2 −32.6 −30.9 −29 −28 −27.3 −26.7 −26.1 −25.8 −25.3
2.4 −25.5 −22.9 −20.9 −19.6 −18.5 −17.5 −16.7 −16.2 −15.8 −15.3
2.5 −21.3 −18.8 −16.8 −15.4 −14.1 −13.2 −12.4 −11.9 −11.5 −11
2.8 −10.3 −7.7 −5.6 −4 −2.9 −2.2 −1.4 −0.5 −0.1 0

Table 4: Heat-map representing classroom rendering runtime extension [%] in different hard-
ware configurations.

the applied optimal settings are compared in the Table 6. The comparison is made against the
Haswell (AC) default configuration. From this perspective, reducing the hardware resources
on an AC Haswell processor may gain 3–6 % energy savings, but upgrading the cooling system
to DLC increases the saving to 11–14%.

5 Conclusions

Image rendering presents an application with a single compute intensive kernel that may sig-
nificantly reduce its power consumption due to static resources throttling.

We have carried out the Blender client analysis on an Intel Haswell processor using the
MERIC library for DVFS and UFS to reach maximum energy savings. The applied approach
can reduce the energy consumption by up to 9 %, although with a significant runtime extension.
To reduce the impact on runtime we propose to use UFS only, which results in a 4.8 % energy
saving with a 4 % runtime extension.

More significant energy savings were achieved when we compared the results in terms of
different types of cooling systems on the same Haswell architecture. Directly Liquid Cooled
technology gives energy savings of 14 % with a 22 % longer runtime compared to Air Cooled
HSW technology.
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Figure 6: Graph of the rendering runtime [s] of the Classroom scene in different hardware
configurations.
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ferent hardware configurations.

Acknowledgements

This work was supported by The Ministry of Education, Youth and Sports from the Large In-
frastructures for Research, Experimental Development and Innovations project “IT4Innovations
National Supercomputing Center – LM2015070”. This work was also supported by The Min-

8



uncore [GHz]
core [GHz] 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
1.2 −20.3 −20.6 −21.8 −22.8 −24.2 −26.3 −28.8 −31.8 −34.6 −38.2
1.4 −8.6 −8.9 −9.5 −10.3 −12 −13.7 −15.5 −18 −20.6 −23.6
1.6 −0.2 −0.5 −0.5 −1.5 −2.7 −4 −5.8 −7.8 −10 −12.5
1.8 3.8 3.9 3.8 3.5 2.3 1.3 −0.3 −2.2 −4.2 −6.5
2 5.3 5.6 5.9 5.6 5 3.7 2.4 0.8 −1.2 −3.1
2.2 7.3 7.8 7.9 7.9 7.3 6.3 5.1 3.7 1.8 0
2.4 8 8.7 9.1 8.9 8.4 7.7 6.7 5.4 3.7 2.2
2.5 7.9 8.6 9 8.9 8.7 8 7 5.7 4.3 2.8
2.8 2.9 4 4.7 4.8 4.6 4 3.3 2.6 1.3 0

Table 5: Heat-map representing classroom rendering energy savings [%] in different hardware
configurations.

Platform Default Optimal Energy and time
settings settings savings

Classroom scene
HSW AC 19318 J; 65 s 18477 J; 79 s E+4%; T-22%

HSW DLC 18699 J; 65 s 17001 J; 79 s E+14%; T-22%
Dweebs scene

HSW AC 19072 J; 64 s 18249 J; 78 s E+4%; T-22%
HSW DLC 18541 J; 64 s 17093 J; 78 s E+12%; T-22%
Fishy Cat scene

HSW AC 18794 J; 63 s 17755 J; 73 s E+6%; T-16%
HSW DLC 18211 J; 63 s 16672 J; 73 s E+13%; T-16%
Pabellon B. scene

HSW AC 17833 J; 60 s 17220 J; 73 s E+3%; T-22%
HSW DLC 17068 J; 60 s 15732 J; 73 s E+11%; T-22%

Table 6: Runtime and energy consumption comparison of Haswell nodes with Air Cooling
(HSW AC) and with Direct Liquid Cooling system (HSW DLC) in the default and optimal
settings.
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