
Abstract

This paper presents the modelling possibilities of a full tridimensional finite el-

ement approach for prediction of railway ground–borne vibrations. Non-reflecting

boundaries are compared to classical ones, with the emphasis on the modelling of the

soil wave propagation and reflection. Considering that the ground wave propagation

is a transient problem, the time domain formulation is preferred. Rules about domain

dimension and element size are clearly emphasized, in order to establish the best

compromise between accuracy and numerical model heaviness. Typical results are

presented, considering cases of homogeneous or layered halfspace, and illustrate the

calculation of the structural response of a building during the passage of a tram at

constant speed.

Keywords: railway ground vibrations, finite/infinite element method, viscous bound-

ary, vehicle dynamics, soil–structure interaction, wheel/rail contact, track deflection.

1 Introduction

Railway–induced ground–borne vibration has been investigated by many authors over

the two last decades, focusing on the propagation of ground vibrations, which have

generally been studied with the help of the boundary element method. The last years

were fertile in terms of prediction models. Through these models, the influence of the

propagation of ground vibration waves is illustrated considering different generation

mechanisms (rail deflection, track irregularity, vehicle dynamics, . . . ).

The choice of the numerical procedure is made with the concern of an efficient rep-

resentation of infinity, adding a supplementary difficulty for the modelling. Several

theoretical formalisms are suitable to obtain rigorous solutions for soil responses un-

der dynamic load. A numerical model is unavoidable to account for the soil–structure
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interaction problems with great accuracy. The boundary element method (BEM) is

based on an integral transformation that makes it possible to reformulate Navier’s

elastodynamic equations at the surface. The main difficulty is to determine a par-

ticular solution (Green’s function) considering the specific case of the problem (ho-

mogeneous or layered soil, at the surface or under soil load, . . . ). BEM is numeri-

cally efficient but it is practically limited to linear formulations and simple geome-

tries. It also imposes some restrictions for complex structures but some hypotheses

can nonetheless be made, neglecting for example the soil–structure interaction under

some conditions [1].

The finite element method (FEM) is by contrast able to model a soil with complex

geometries, insofar as proper conditions are applied on the domain border. Another

advantage is that FEM software is well adapted to non-linear problems. These non-

reflecting conditions have recently been emphasized by Wang et al. [2] as elementary

boundaries, local boundaries or consistent boundaries. The latter include the infinite

element formulation, which is widely used in acoustics and is being proposed more

and more by commercial finite element software’s. In the case of the railway, the FEM

formulation was usually restricted to bi-dimensional analysis (as proposed by Yang et

al. [3] or by Yerli et al. [4]) for limiting computational resources, but recently 3-D

models have been found in the literature. Kouroussis and his coworkers [5, 6] have

proposed a tri-dimensional model using the well-known Lysmer viscous boundary [7]

combined to infinite element formulation, in order to estimate the level of vibrations

transmitted to the neighbourhood.

Presently, despite the importance of the vehicle dynamics, information on railway

traffic vibrations is most often limited to track/soil configuration. This information

makes it possible to understand the soil behaviour but cannot be used by the train con-

structors to verify the influence of some vehicle components. Moreover the eventual

coupling between all the subsystems is neglected in the analyses. Kouroussis et al. [5]

have presented a study of vehicle/track influence as relevant as possible with the aid

of a compound vehicle/track/soil model. Special attention was paid at the excitation

mechanism, considering the track and the vehicle behaviour on the forces transmitted

to the soil. The vehicle dynamics was investigated and the results have shown that, on

top of the general considerations, the ground vibration level strongly depends on the

vehicle configuration. The study was therefore limited to homogeneous half-space,

without analysing the effect of soil parameters. It is however recognised that soil lay-

ering has effects on ground wave propagation (reflection and refraction at the layer

interfaces) and induces soil surface vibrations that are completely different from those

obtained in the case of homogeneous half-space.

In this paper, the use of this finite/infinite element model is discussed. Some prop-

erties of non-reflecting boundaries are presented. Viscous boundaries are analysed

in order to demonstrate their efficiency on soil modelling and to show the conditions

that imply the best wave absorption. Rules in frequency and time domain analysis are

also given, before presenting the detailed implementation of the model in the ground

vibration prediction. Practical applications are presented, based on the passing of a

2



tram. Free field responses are shown, as well as the structural response of a building

placed near the track, illustrating the possibility of the proposed methodology and the

interest of the FEM in this field.

2 Some elements in soil dynamics

The simulation of unbounded domains in numerical methods is a very important topic

in dynamic soil–structure interaction and wave propagation problems. Although its

mechanical behaviour is essentially dependent on the size of its solid particles and

voids, the soil is often considered as a linear material (the shear strain is smaller than

10−5 in most practical cases).

The frequency range depends on the purpose of the problem. If the dweller’s com-

fort or structure damage safety is of interest, the frequencies until 80 Hz are important

(with a particular attention in the range between 5 and 20 Hz, according to the standard

references). Higher frequencies are anyway attenuated by the soil.

When the soil is modelled as an elastic, homogeneous and isotropic medium, the

wave field can be expressed as a superposition of plane waves [8], of two types: longi-

tudinal waves (or P–waves) where the particle motion exists in the direction of wave

propagation, and shear waves (S–waves), moving perpendicularly to their propagation

direction. The wave velocities cP and cS are given by

cP =

√

2G(1 − ν)

ρ(1 − 2ν)
(1)

and

cS =

√

G

ρ
(2)

where G, ν and ρ are the shear modulus, the Poisson’s ratio and the density of the

medium, respectively. Along the surface, additional waves, called Rayleigh waves,

can be developed in the case of shear waves reflection on the free surface. These waves

propagate in the horizontal direction and their amplitude decreases exponentially with

the depth (the energy in concentrated up to three times its wavelength). It is known

that the P–wave is the fastest, with after the S–wave, itselves a bit faster than the

Rayleigh wave. In term of transmitted energy, it is the opposite: in the case of a

vertical point load acting on the soil surface, the Rayleigh wave transports 67% of the

total energy [9].

In the case of layered media, reflection and refraction increase the problem com-

plexity. Each layer can be defined by the body waves but the surface waves in layered

media are dispersive. The frequency dependent phase velocities of the different modes

of the layered medium are therefore considered, depending on the configuration and

the height of each layer. For this configuration, the use of numerical tools becomes

necessary.
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3 On the modelling of an unbounded medium using

the finite element method

The FEM is more adapted than BEMs if non–linear problems, local discontinuities or

complex geometries are present. The main difficulty in mimicking an infinite domain

like soil in the finite element method is clearly to correctly define the conditions at the

model border. Many possibilities exist, some of them being limited by restrictive con-

ditions, but can be classified according to their nature and complexity, as summarized

in Table 1.

Classical boundaries (free and fixed conditions) must be used with care because

they impose a total reflection at the border of the domain, leading to loss of accuracy.

Knowing the Saint-Venant’s principle, the domain size can be taken sufficiently large

to decrease the effect of the reflected wave.

Local boundaries have been proposed by many authors for improving the absorp-

tion efficiency at the boundary. Local or distributed springs or damper elements can be

imposed at the border, working normally and/or tangentially. The main difficulty is to

find the correct coefficients. The work of Lysmer and Kuhlemeyer [7] is a perfect ex-

ample and is without any doubt the best–known local boundary in the literature. They

have investigated different possibilities for expressing infinitesimal dashpots and have

found a boundary condition analytically expressed by

σ = aρcP ẇ (3)

τ = bρcS v̇ . (4)

The normal and shear stress σ and τ depend on the normal and tangent velocities

ẇ and v̇ of the boundary. Parameters a and b are dimensionless and can both vary

from 0 to ∞. In accordance with [7], a and b are chosen equal to 1; these values

give maximum absorption for compression and shear body waves treatment. These

authors also studied the case of Rayleigh waves, important in a free surface, and they

demonstrated that parameters a and b also depend on the depth of the soil surface for

Rayleigh waves. For example, at the free surface, a is nearly equal to 2 since b = 0.

At a depth of twice the Rayleigh wavelength, both parameters tend to converge to 1,

as for the body waves.

The most promising consistent boundaries are certainly in the infinite element li-

brary. Two possibilities exist to implement infinite elements [10]:

• use of decay function, combined with ordinary finite element shape functions,

• mapping element from a finite to an infinite domain.

The idea behind both element types is to obtain a decay aspect in the shape function

in the form of 1/ri (i = 0, 1, 2, . . . ). The goal of using these elements is to establish a

behaviour that is similar to the infinite domain.
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σ = aρcP ẇ

τ = bρcS v̇

finite domain

P–wave

P–wave

S–wave

θP

θP

θS

Figure 1: Reflection on the viscous boundary

For example, the mapping procedure is applied to the element in the far field to

redefine the infinite domain. The method proposed by Zienkiewicz et al. [11] is cer-

tainly the best known, due to its simplicity, and it is still used at the present time.

As illustrated in Figure 2(a) (1–D case), node 1, on the interface between finite and

infinite elements, at distance r1 = a from the pole r0 (at r = 0) has the coordinate

ξ = −1 after mapping. The node 2 coordinate r2 = 2a becomes ξ = 0. The relation

between the initial coordinate and the mapped coordinate can be written as

r(ξ) =
−2ξ

1 − ξ
r1 +

1 + ξ

1 − ξ
r2 (5)

or

r(ξ) =
2a

1 − ξ
(6)

which gives after inversion

ξ(r) = 1 −
2a

r
(7)

The shape function can finally be combined with standard quadratic interpolation

to give

u(ξ) =
1

2
ξ (ξ − 1) u1 +

(

1 − ξ2
)

u2 (8)

where u1 and u2 are respectively the displacement of nodes 1 and 2 and u the displace-

ments inside the studied element. This function naturally includes a decay aspect,

function of 1
r

and 1
r2 . In fact, using the inverted geometric mapping,

u(r) = (−u1 + 4u2)
a

r
+ (2u1 − 4u2)

(a

r

)2

(9)
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is found and provides the desired behaviour. In bi– and tridimensional cases, the same

procedure is applied for the other coordinates (Figure 2(b)). It is of interest to note

that the pole position must be chosen with care to ensure that the element edges in the

infinite direction do not cross over each other.

aa
r
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1

2

2

3

3

r0 r1 r2 r3

ξ = −1 ξ = 0 ξ = +1

∞

(a) mapped transformation (one infinite dimension)
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interface

nodes at infinity

finite element
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a

(b) Geometry of the infinite element: position of nodes

Figure 2: Mapped infinite element

4 Contribution of the viscous boundary and the infi-

nite elements

4.1 Practical information for finite element software

To analyse the contribution of local and consistent boundaries, models have been de-

veloped under ABAQUS software. Each model consists of a half–sphere composed of

finite elements. Specific conditions are applied, such as viscous boundaries according

to Eqs. (3) and (4), and mapped infinite elements, connected at the border. Notice that,
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in dynamic analysis under ABAQUS, viscous boundaries are automatically added at

the border between finite and infinite elements. Eq. (3) and (4) are used as such,

considering a = b = 1.

The choice of a spherical form allows a convex shape at the border, for insuring the

condition of non-crossing infinite elements and for easy meshing. The software can

be used to model the soil geometry but an automatic procedure does not exist to add

and define the infinite elements at the boundary. A program has been created to fill

this deficiency: from the original script file of a FEM model, it reads the geometrical

information, searches the boundary nodes and connects the infinite elements with the

proper orientation. The use of infinite elements is transparent and perfectly joins the

standard finite element procedure.

Classically, rules are used to correctly define a frequency analysis of a general fi-

nite/infinite element model. Laghrouche and Le Houédec [12] have analysed various

situations, in the case of an harmonic load and in the frequency domain: on top of the

classical rule in FE analysis (a minimum of 10 elements per Rayleigh wavelength λR),

the domain size Td must be greater than at least 3λR to minimize the modelling error.

In the case of a large frequency band model, these two combined conditions unfor-

tunately impose a large number of elements. Due to the large size of a finite/infinite

element model, only the case of a harmonic load (in the frequency domain) was stud-

ied and, most often, in the case of 2–D analysis alone [3, 4]. To avoid this limitation,

Kouroussis et al. [13] recently studied various situations in frequency and time analy-

ses. As the wave propagation is a transient phenomenon, the domain dimension does

not act upon the results if the boundary is defined correctly: a time domain analysis is

more appropriate to simulate wave propagation. In the case of tridimensional analysis,

computer memory imposes a limited number of elements.

4.2 Theoretical efficiency of viscous boundary

Lysmer and Kuhlemeyer [7] have analysed viscous boundary efficiency. For each

type of incident body wave, they calculated the ratio between the reflected Er and

the incident energy flux Ei. A mistake unfortunately appears in the final expressions,

recently corrected by Kouroussis et al. [14] and summarized as follows.

For an incident primary wave (P–wave) of unitary amplitude and inclined by an

angle θ with respect to the wave front (see Figure 1), the reflection at the viscous

boundary develop reflected P and S–waves, of amplitude AP and AS , respectively.

The energy ratio is expressed by

Er

Ei

= A2
P +

tan θS

tan θP

A2
S . (10)

Angle θS , related to the S–waves, is simply defined by

cos θS =
cS

cP

cos θP (11)

where cP and cS represent the primary and secondary wave velocities, respectively.
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For an incident secondary wave (S–wave), the same observation can be made for

the energy flux:

Er

Ei

= A2
S +

tan θP

tan θS

A2
P , (12)

available only if θS > θS,cr (θS,cr being the critical angle and depending only on

Poisson’s ratio). In the other case (θS ≤ θS,cr), Eq. (12) must be substituted by

Er

Ei

= A2
S . (13)

Amplitude AP and AS can be calculated by expressing the stress boundary conditions

at the interface [7].
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Figure 3: Effective energy ratio (ν = 0.3)

Figure 3 presents the effective energy ratio for two cases, corresponding to the

energy ratio multiplied by the sine of incident angle (θP or θS), for some values of

adimensional constants a and b. Particular cases of a = b = 0 and a = b = ∞

correspond to a free and a rigid boundary, respectively. The curves clearly confirm

that the choice of unity for value of investigated parameters gives the best absorption.

Note that, for a S-wave, a discontinuity appears in the curves, at the critical angle θS,cr.

Table 2 summarizes the average of reflected to incident energy, calculated as the ratio

between the area under the curve and the total graph area. This reveals that the optimal

viscous boundary absorbs nearly four times better than free or rigid boundaries.

value of a and b
0 0.2 0.5 1 2 5 ∞

P–wave absorption 20.6% 65.8% 91.0% 98.3% 88.6% 62.5% 20.6%

S–wave absorption 21.4% 70.8% 92.4% 96.4% 85.7% 60.5% 20.6%

Table 2: Average of reflected to incident energy (ν = 0.3)
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4.3 The case of an impact load at the soil surface

A second analysis can emphasize the efficiency of the viscous boundary. The stud-

ied case is based on a homogeneous soil with typical dynamic parameters (density

ρ = 1600 kg/m3, Young’s modulus E = 120 MN/m2, Poisson’s ratio ν = 0.3 and

viscous damping ratio β = 0.0004 s). The analysis is based on an impulsive load

applied on a 30 cm × 30 cm square surface. The surface load is defined by the decay

function

f(t) =

{

A0 if t < t0
A0 + Ae[−(t−t0)/td] if t ≥ t0

(14)

where A0 = 0, A = 1 N, t0 = 0.05 s and td = 0.001 s. These parameters are adjusted

in order to get close to an impulsive load. This situation corresponds to a weight falling

on the soil surface, as in a test usually performed to determine the soil characteristics.

Figure 4 displays the shape of the excitation. It also shows that frequencies up to

100 Hz are excited with nearly the same proportion.
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Figure 4: Impact load at the soil surface: excitation characteristics

Figure 5 compares the numerical vertical velocity at the soil surface and at 10 m
from the source, for various viscous boundary configurations (the same value of adi-

mensional constants is used). Two domain sizes Td = 50 m and Td = 20 m are studied.

Regarding the signals, the following observations can be made:

• The signal is made up of two parts: the incident vibrations (here between 0.05
and 2 s), composed partially of the Rayleigh wave contribution, and the reflected

signal, more or less significant depending on the values of a and b.

• As expected, fixed and free boundaries impose a total reflection at the border. A

particular property can be emphasized in these cases: the body waves interaction

with the fixed surface develops reflected waves propagating in opposite phase

with respect to those generated by the free boundary. This is due to the different

impedance at the border. Through the different viscous boundaries, it appears

that a good performance is obtained for a = b = 1, for Td = 50 m as well as

for Td = 20 m. This observation corroborates the small influence of the domain

size in time domain analysis if boundaries properly absorb the incident waves.
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Figure 5: Comparison between various finite element models with a viscous boundary

for a homogeneous halfspace: vertical soil surface velocity at 10 m from the source

• The particular case of a = b = 2 gives slightly better absorption than the refer-

ence case. This can be explained by the fact that the Rayleigh waves, dominating

the incident waves, are better absorbed at the soil surface by a viscous boundary

with a = 2. The difference is however negligible.

4.4 Efficiency with infinite elements

xy

z

σ

τ

τ

infinite elements region of interest
(finite element modelling)

Figure 6: Combined viscous boundary conditions / infinite elements

The commercial ABAQUS software proposes infinite elements in its library, work-

ing with the help of the mapping formulation. In static analysis, the infinite elements

placed in the domain boundary thereby make it possible to confirm Boussineq’s solu-

tion. In dynamic analysis, viscous boundaries are automatically added at the border

between finite and infinite elements in order to better attenuate the incident waves and

to avoid their reflection (Figure 6).

Figure 7 compares the solutions obtained using the combined viscous/infinite ele-

ments model. As above, the effect of the domain size is minimal. For both dimensions
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(b) For a domain dimension Td = 20 m

Figure 7: Comparison between various finite element models with combined viscous

boundary/infinite elements for a homogeneous halfspace: vertical soil surface velocity

at 10 m from the source

Td of 20 m and 50 m, practically the same result is obtained. Compared to Figure 5

with the curves with a = b = 1, a better absorption is obtained, demonstrating the real

benefit of the infinite elements. Combined with the viscous boundary, a finite element

model offers an interesting tool to predict the dynamic behaviour of soil, particularly

if complex geometries or non-linearities are needed.

5 Calculation of the soil surface forces in the vehi-

cle/track subsystem

A prediction model has been developed, working in two successive steps (Figure 8).

The first one is based on the philosophy adopted by the train constructor. The vehicle

is modelled using a classical multibody approach. Carbodies and bogie frames are de-

fined as rigid bodies linked by interconnection elements (springs and dampers) repre-

senting the suspension. As the vertical motion has a significant effect on ground vibra-

tions, a bidimensional model of the vehicle is sufficient at this stage. It is connected to

the track, itself modelled by a classical 2–D and 2–layer model, in accordance with the

reviews of Grassie et al. [15] and Knothe and al. [16]. The rail is discretely supported

by rigid sleepers. The flexible rail, defined by its Young modulus Er, its geometrical

inertia Ir, its section Ar and its density ρr, is described by the finite element method.

A spacing L of the sleepers has been considered, with a discretization of Nn elements

for one sleeper spacing. Railpads and ballast are characterized by springs and dampers

(kp and dp for the railpad, kb and db for the ballast). The sleepers are therefore defined

as a lumped mass m. The vehicle/track interaction is characterized by the contact law,

generally defined as non–linear. The defect on the rail surface is also considered as

a local unevenness and/or an overall roughness and can be represented by any kind

of deterministic functions. The integration of the established equations of motion is
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performed with the home–made C++ library, EasyDyn, dedicated to second–order

differential equations and namely multibody problems [17, 18].

v0
x

z

m

kp

kb

dp

db

L

simplified soil layer

(Er,Ir,Ar,ρr)

step 1

Dynamic study of the vehicle/track sub-

system with a multibody vehicle model

moving on a flexible track taking into ac-

count track irregularity. The vehicle/track

motion is simplified in the vertical plane.

step 2

Dynamic study of the soil subsystem

where the soil surface forces cor-

respond to the contribution of the

sleepers, calculated in the first step.

Figure 8: Vehicle/track/soil model, working in two successive steps

The second step considers the reaction forces of the ballast as the loads acting at

the surface of the soil. The latter takes all the consideration aspects presented in this

paper. The two-step simulation relies on the hypothesis that the track/vehicle and the

soil subsystems can be decoupled, which is true only when the soil is stiff enough

with respect to the ballast. However, a condensed form of the soil impedance can be

included in the track model with the help of a Winkler foundation or more advanced

solution [19].

The calculation time required to perform the simulation of the soil dynamics is

nevertheless great but can be reduced by using an explicit integration scheme. Fig-

ure 9 gives a typical example of calculation time, for implicit or explicit integration

schemes, when using 1 or 4 CPU cores. It clearly shows the benefit brought by the

explicit integration scheme. Let us mention that the time required to perform the sim-

ulation of the soil with the implicit scheme (about 20 days) has been extrapolated.
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Figure 9: Example of CPU time for vehicle/track and soil simulation (with a

QuadCore@2.5GHz PC)

6 Application to the railway problem

6.1 The Brussels T2000 tram

Due to the low speed, the tram case is a perfect example of the dynamic track inter-

action where the quasi-static deflection has a small effect on the ground vibrations.

Moreover, tramways are very close to buildings and high vibratory nuisances are of-

ten felt by the inhabitant. In this context, the tram T2000 LRV of Brussels has been

studied in the case of a local defect defined at the rail surface. This multi-car tramway

uses independent rotating wheels, resilient motor wheels and a low floor design. It

consists of 3 cars for which specific configurations are adopted (Figure 10):

• The central car body has a classical rigid bogie (BR4×4 bogie), composed of

four independent drive wheels (Figure 10(b)).

• The leading bogies at the extremities are carried by an articulated frame allow-

ing each wheel to be tangent to the rail (BA2000 bogie). It is made up of two

independent rotating wheels driven by a motor placed inside the wheels, and

two trailer wheels (Figure 10(c)).

Each bogie comprises rubber primary and air-spring secondary suspensions. The main

dimensions are given in Figure 10(a).

A multibody model of the vehicle is derived and is defined by 18 degrees of free-

dom (dof ), to take into account the vehicle bounce and pitch motions. The inputs

of the model (urban railway parameters and soil parameters) have been experimen-

tally identified [5] on the tramway site of Haren (Brussels). The soil FIEM dimension

is equal to Td = 25 m, which is sufficient for analysing this kind of problem. The

track model consists of 532 dof taking into account the flexible rail, the sleepers and a

lumped mass model for the foundation. The latter allows to include the soil flexibility

directly into the vehicle/track simulation.
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Figure 10: Characteristics of the T2000 tram (Bombardier Transport)

6.2 Free field response during the passage of the tram at constant

speed

The T2000 tramway is simulated in a straight line and the response is calculated at 2 m
from the track, in front of the local rail defect. The desired analysis mainly deals with

the interaction of the wheels with the rough rail, to check for the soil surface vertical

motion. Two configurations are successively adopted for the soil: a homogeneous

soil and a 6-layered soil. Both configurations have been determined using in situ

measurements with complementary techniques (refraction survey, SASW). The soil

model consists of 568,000 finite/infinite elements and 527,000 dof .

Figure 11 presents the comparison between measurement and model results when

the tramway is running at v0 of 30 km/h and for a distance of 2 m from the track.

Six separate areas are clearly shown in each figure, representing the passing of each

wheelset on the defect. It can be seen that the models correctly predict the levels and

shapes of the velocity evolution. The layered configuration gives better results than

the homogeneous ones, which lightly underestimate the maximum level. This shows

that the detailed description of the soil is necessary to accurately predict the ground

wave propagation.

6.3 Structural dynamics of a building near a tramway line

A building has been modelled by finite elements and placed near the track. The build-

ing is representative of classical private houses erected during the 20th century. The

house building presents a rectangular shape (7 × 10 m) in plane and is composed, in

cross section, of a ground floor and an upper one partially involved under the roof.
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Figure 11: Vertical ground velocity at 2 m from the track, during the passing of the

T2000 tram at speed v0 = 30 km/h

The peripheral masonry walls are composed of plain masonry of non-perforated clay

bricks (0.25 m thick). The ground floor, the foundation walls and shallow strip foun-

dations are modelled in deep connection with the soil model. The first floor slab

is composed of reinforced cast concrete and is embedded inside the masonry walls

along each of its sides. The building is close to the track (the front wall is located at

4 m from the track), corresponding to a realistic situation often encountered in urban

area. The layered soil configuration is retained for the simulation.

Figure 12 illustrates the ground wave propagation in the case of free field domain

and in the case of the same domain including the studied building. The instants 1.425 s,
2.425 s and 3.425 s emphasize the effect of each bogie on this propagation. Maximum

and minimum surface velocities are displayed on each sub-figure. The following ob-

servations are noteworthy:

• In both situations, the passing of each wheelset induces significant vibrations

around the rail defect. In the other cases, the generated ground wave is less

important.

• If the vehicle is far from the building, the generation ground wave propagation

is identical in both studied cases. When the vehicle is close to the building,

the ground waves completely change and the extrema amplitudes are modified.

Figure 12(e) and 12(f) show that the presence of the building attenuates the soil

surface vibrations in the back of the building and amplifies it in its front.

7 Conclusion

The non-reflecting conditions at the border are defined by the combined viscous

boundary and infinite elements. Since complex geometries of local non-linear effects

are often associated with vibratory nuisance, the time domain simulation is preferred.

It also makes it possible to work with reduced model size, without sacrificing the accu-

racy of the model. Viscous boundary conditions are analysed for efficiency, showing
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Figure 12: Propagation of the free field (left) and structural response (right) vertical

component of the soil vibration waves, in the case of a vehicle speed of 30 km/h
moving along a track with a local defect
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that adimensional parameters intervening in the damping coefficient are adjusted to

one for a maximum absorption of body waves.

Applications are presented through a realistic example from the Brussels tramway

line. Free field response is displayed and compared to experimental curves, showing

good agreement. Structural response is also presented, demonstrating all the possibil-

ities of the finite element method.
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