Proceedings of the Seventh International Conference on Computational Structures Technology

Civil-Comp Press publications on Computational Engineering

Proceedings of the Sixth International Conference on Computational Structures Technology *Edited by: B.H.V. Topping and Z. Bittnar*

Proceedings of the Third International Conference on Engineering Computational Technology *Edited by: B.H.V. Topping and Z. Bittnar*

Saxe-Coburg Publications on Computational Engineering

Computational Structures Technology *Edited by: B.H.V. Topping and Z. Bittnar*

Engineering Computational Technology *Edited by: B.H.V. Topping and Z. Bittnar*

Computational Mechanics for the Twenty-First Century *Edited by: B.H.V. Topping*

Object Oriented Methods and Finite Element Analysis *R.I. Mackie*

Computational Modelling of Masonry, Brickwork and Blockwork Structures *Edited by: J.W. Bull*

Finite Element Mesh Generation B.H.V. Topping, J. Muylle, P Iványi, R. Putanowicz and B. Cheng

Proceedings of the Seventh International Conference on Computational Structures Technology

Edited by **B.H.V. Topping and C.A. Mota Soares**

© Civil-Comp Ltd, Stirling, Scotland

published 2004 by **Civil-Comp Press** Dun Eaglais, Kippen Stirling, FK8 3DY, UK

Civil-Comp Press is an imprint of Civil-Comp Ltd

ISBN 0-948749-93-8 (Book) ISBN 0-948749-94-6 (CD-Rom) ISBN 0-948749-95-4 (Combined Set)

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

Cover Image: The Japanese pavilion at EXPO 2000 in Hannover, Germany, designed by the architect Shigeru Ban. Photograph by H. Rothert. For more details, see Paper 187.

Printed in Great Britain by Bell & Bain Ltd, Glasgow

Contents

Preface

xxvii

Ι	Modelling and Simulation of Adaptive Beams and Bimorphs Session organised by A. Benjeddou and C.M. Mota Soares	1
1	Control of Thermally-Induced Vibrations in a Composite Beam F. Ashida and T.R. Tauchert	3
2	Finite Element of a Smart Beam with Piezoelectric Patches using Electroelastic Formulation S.N. Ahmad, C.S. Upadhyay and C. Venkatesan	5
3	Finite Element Modelling of Hybrid Beams with Patch Sensors and Actuators using a Coupled Efficient Zigzag Theory N. Alam and S. Kapuria	7
4	Passive Vibration Damping using Shunted Shear-Mode Piezoceramics A. Benjeddou and JA. Ranger-Vieillard	9
5	Finite Element Modelling of Beams with Arbitrary Active Constrained Layer Damping Treatments C.M.A. Vasques, B. Mace, P. Gardonio and J.D. Rodrigues	11
6	Beam Models of Piezoelectric Laminates C. Maurini, J. Pouget and F. dell'Isola	13
7	On Analytical and Numerical Modelling of Piezoelectric Bimorphs C. Poizat and A. Benjeddou	15
8	Classical and Optimal Active Vibration Control of Smart Piezoelectric Beams C.M.A. Vasques and J.D. Rodrigues	17
9	Simulation and Analysis of Effective Properties of Porous Piezocomposites P.M. Bondarev, A.V. Belokon and L.S. Xanthis	19

10	Modelling and Simulation of Smart Tubular Composites P. Bondarev, L.S. Xanthis, A. Benjeddou and A. Nasedkin	21
Π	Modelling and Simulation of Adaptive Plates and Shells Session organised by A. Benjeddou and C.M. Mota Soares	23
11	A Unified Formulation for Finite Element Analysis of Piezoelectric Adaptive Plates A. Robaldo, E. Carrera and A. Benjeddou	25
12	Closed-form Solutions for the Free Vibration Problem of ultilayered Piezoelectric Shells M. D'Ottavio, D. Ballhause, B. Kröplin and E. Carrera	27
13	A New Hybrid Plate Model for Response and Control of Smart Laminates A.H. Sheikh and P. Topdar	29
14	On Analytical and Numerical Studies of Composite Structures Including Piezoelectric Elements A. Fernandes and J. Pouget	31
15	Electric Potential Approximations for an Eight Node Plate Finite Element O. Polit and I. Bruant	33
16	Parameter Estimation in Active Plate Structures A.L. Araújo, C.M. Mota Soares, J. Herskovits and P. Pedersen	35
17	Optimal Configuration of Piezoelectric Actuators in Vibrating Piezolaminated Structures M.A. Hamdi Alaoui, M. Rahmoune and E. Benghoulam	37
18	Solution of Thick Laminated Cylindrical Panels with Piezoelectric Layers under Dynamic Loading M. Shakeri, M.R. Eslami and A. Daneshmehr	39
19	Identification of Damping in Selected Magnetorheological Composites J. Kaleta, D. Lewandowski and G. Ziętek	41
20	An Active Vibration Control Study for an Electrical Machine K.M.J. Tammi, A.J. Hynninen and P.J. Klinge	43
III	Modelling and Simulation of Composite Structures Session organised by A. Benjeddou and C.M. Mota Soares	45
21	A Technique for Optimally Designing Fibre-Reinforced Laminated Plates for Minimum Weight with Manufacturing Uncertainty M. Walker and R. Hamilton	47

22	Mass Conservation Enhancement of Free Boundary Mesolevel Flows during LCM Processes of Composites Manufacturing Z. Dimitrovová and S.G. Advani	49
23	Optimizing the Composition of a Functionally Graded Material F.C. Figueiredo, L.A. Borges and F.A. Rochinha	51
24	Optimal Dynamic Response of Composite Structures using a Hierarchical Genetic Algorithm C.A.C. António	53
25	High Volume Fraction AlSiCp Composites: A Numerical Study on the Thermal Expansion Coefficient F. Teixeira-Dias, A. Andrade-Campos, J. Pinho-da-Cruz and J.A. Oliveira	55
26	Finite Element Initial Buckling and Postbuckling Initial Failure Analysis of Short Pultruded GRP Columns Subjected to Uniform End Compression G.J. Turvey and Y. Zhang	57
27	Elastic Behaviour of Reinforced Sandwich Beams M. Leite, A. Silva and M. Freitas	59
28	Modelling Cross-Ply Laminated Elastic Shells by a Higher-Order Theory and Multiquadrics A.J.M. Ferreira, C.M.C. Roque and R.M.N. Jorge	61
29	A Multiparticle Finite Element for Free Edge Effect Analysis of Laminated Composites V.T. Nguyen and J.F. Caron	63
30	Analysis of Laminates using the Element-Free Galerkin Method J. Belinha and L.M.J.S. Dinis	65
IV	Computational Models for Multilayered Structures Session organised by E. Carrera	67
31	Unified Partial Mixed Variational Formulations for Heat Transfer and Thermal Stress Dynamic Coupled Responses of Multilayer Composites A. Benjeddou and O. Andrianarison	69
32	Analysis of Composite Plates using a Layerwise Theory and Radial Basis Functions A.J.M. Ferreira	71
33	Finite Element Analysis of the Influence of Temperature Profile on Thermoelasticity of Multilayered Plates A. Robaldo	73

34	 C¹ Plate and Shell Finite Element for Geometrically Non-Linear Analysis of Multilayered Structures O. Polit, F. Dau and M. Touratier 	75
35	Considerations on Higher-Order Finite Elements for Multilayered Plates based on a Unified Formulation M. D'Ottavio, D. Ballhause, T. Wallmersperger and B. Kröplin	77
36	A Layerwise Model for Soft Core Sandwich Panels R. Moreira and J.D. Rodrigues	79
37	Treatment of Stress Variables in Advanced Multilayered Plate Elements based upon Reissner's Mixed Variational Theorem L. Demasi	81
38	Hybrid Stress-Strain Elements based on the First-Order Single-Layer and Layer-Wise Shell Theories G.M. Kulikov and S.V. Plotnikova	83
39	Mesodynamics of a 3D C/C Composite under Shock Loading: a Dedicated Computational Multiscale Approach J. Sen Gupta, O. Allix, PA. Boucard, A. Fanget and PL. Héreil	85
40	Wavelet-Based FEM Analysis of Composites with Interface Defects M. Kamiński	87
41	Non-linear Deformation and Microdamaging of Anisotropic Porous Composites L. Nazarenko	89
42	Development of a Numerical FEM Model for Non-Crimp Fabric Composite Materials N. Tessitore and A. Riccio	91
43	MAC LAM: New Software for the Mechanical Analysis of Composites and Laminates A. Diaz, R. Castaneda, R. Gameros, J.F. Caron and A. Ehrlacher	93
V	Failure Analysis for Composites: Engineering Approaches and Highly Sophisticated Models Session organised by R. Rolfes and J. Teßmer	95
44	Numerical Models Concerning Structures with Multi-Layered Textile Strengthening B. Möller, W. Graf, A. Hoffmann and F. Steinigen	97
45	Delamination Growth Simulation under Monotone and Fatigue Loading Y. Ousset	99

46	Modelling Foreign Object Damage in Composite Aircraft Structures A.F. Johnson and M. Holzapfel	101
47	Delamination and Skin-Stringer Separation Analysis in Composite Stiffened Shells R. Rikards, K. Kalnins and O. Ozolinsh	103
48	Postbuckling Simulation of Stiffened Composite Panels T. Möcker and HG. Reimerdes	105
49	Alleviation of Stress Concentrations in a Stiffened Composite Torsion Box: A Methodological Approach H. Abramovich and T. Weller	107
50	An Investigation on the Stress Distribution around Holes in Compressively Loaded Glass Fiber Reinforced Plastic Composite Laminates S. Vijayarangan, V. Krishnaraj, M. Senthil Kumar and A. Ramesh Kumar	109
51	2D Finite Element Model for the Analysis of Elastic–Plastic Composites Subjected to 3D Stresses A. Taliercio	111
52	Difficulties with Non-Homogeneous Failure Criteria Like Tsai-Wu for Composite Laminates A.A. Groenwold and R.T. Haftka	113
VI	Material Models and Finite Element Analysis Session organised by M.H.B.M. Shariff	115
53	Modelling and Optimization of Die Casting Process Control J.C. Ferreira	117
54	A Generalized Cap Plasticity Model for Cold Compaction of Powder Forming Processes A.R. Azami and A.R. Khoei	119
55	Anisotropic Stress-Softening Model for Damaged Materials M.H.B.M. Shariff and M.A. Noor	121
56	Ductile Fracture under Dynamic Loading using a Strain-Rate Dependent Cohesive Model M. Anvari, I. Scheider and C. Thaulow	123
57	An Integration Algorithm for Non-Isotropic Finite Strain Plasticity M. Cuomo and M. Fagone	125
58	Mixed Formulations for Nonlocal Plasticity F. Marotti De Sciarra	127

59	Error Estimates for Finite Element Approximation of Hemivariational Inequalities M.A. Noor and M.H.B.M. Shariff	129
60	A New Damage Model based on Nonlocal Displacements A. Rodríguez-Ferran, I. Morata and A. Huerta	131
61	Non-Conventional Finite Element Models using Continuum Damage Mechanics C.M. Silva and L.M.S. Castro	133
62	Validation of Finite Element Approaches for Modelling Creep Continuum Damage Mechanics T.H. Hyde, A.A. Becker and W. Sun	135
63	A Micromechanical Model for Inelastic Ductile Damage Prediction in Polycrystalline Metals M. Boudifa, K. Saanouni and JL. Chaboche	137
64	Modelling and FEM Simulation of RP Stereolithography Material J.C. Ferreira	139
VII	Formulations and Computational Models for Finite Strains Session organised by J. Plešek	141
65	Formulation, Verification and Numerical Procedures for Hencky's Elasticity Model J. Plešek and A. Poživilová	143
66	Numerical Simulation of Rubber Tread Blocks in Frictional Sliding K. Hofstetter, Ch. Grohs, J. Eberhardsteiner and H.A. Mang	145
67	Comparison of Objective Stress Rates in Single Parameter Strain Cycles A.T.M. Meyers, H. Xiao and O.T. Bruhns	147
68	An Intrinsic Lagrangian Statement of Constitutive Laws P. Rougée	149
69	Objective Time Derivative Defined as Covariant Derivative Z. Fiala	151
70	Stabilized Element Formulations for Multiscale and Multifield problems with Application to Ductile Damage and Failure Modeling B. Svendsen, F. Reusch and S. Reese	153
71	Numerical Modelling and Homogenized Constitutive Law of Large Deforming Porous Media E. Rohan and R. Cimrman	155

72	Application of the Concept of Evolving Structure Tensors to the Modeling of Initial and Induced Anisotropy in Engineering Structures at Large Deformations B. Svendsen and S. Reese	157
73	Modeling the Crystallographic Texture Induced Anisotropy based on Tensorial Fourier Coefficients T. Böhlke	159
74	Minimal States and Maximum Free Energies of Materials with Memory J.M. Golden	161
75	Mechanical Approach of Plasticity in the Presence of Damage R. Souchet	163
76	RC with Large Displacements: Optimization Applied to Experimental Results R.M.L.R.F. Brasil and M.A. Silva	165
77	Fatigue Assessment of Bolted Bar Connections in Crane Structures M. Šraml, J. Kramberger, I. Potrč, Z. Ren and J. Plešek	167
VIII	Non-Linear Dynamics of Structures and Mechanical Systems Session organised by P.L. Ribeiro	169
78	Divergence, Hopf and Double-Zero Bifurcations of a Nonlinear Planar Beam A. Luongo and A. Di Egidio	171
79	Finite Element and Reduced-Order Analytical Models for Nonlinear Response of Cables to Harmonic Loadings F. Vestroni, V. Gattulli, L. Martinelli and F. Perotti	173
80	Frequency Domain Analysis of Geometrically Nonlinear Free Vibrations of 3D Beams P. Ribeiro and R. Lopes Alonso	175
81	Modal Interactions in Shallow Arches P. Ribeiro	177
82	Time Domain Analysis of Geometrically Nonlinear Vibrations of Composite Laminated Plates by the Hierarchical Finite Element Method R.P. Duarte and P. Ribeiro	179
83	Aeroelastic Modes for Nonlinear Panel Flutter at Elevated Temperatures X. Guo and C. Mei	181

84	Reduced Order Methods for Prediction of Thermal-Acoustic Fatigue A. Przekop and S.A. Rizzi	183
85	Dynamic Nonlinear Buckling: Slow Modulation and Noise H.G. Davies	185
86	On Some New Aspects of Nonlinear Modes of Vibrating Systems S. Bellizzi, R. Arquier, R. Bouc and B. Cochelin	187
87	Geometrical Approach to Two Degrees-Of-Freedom Mechanical System Dynamics J. Awrejcewicz, D. Sendkowski and M. Kaźmierczak	189
88	Nonlinear Flow effects on Immersed Spent Nuclear Racks M. Moreira and J. Antunes	191
89	Cosserat Methods and the Fluid-Structure Interaction D.A. Burton, D.Q. Cao, R.W. Tucker and C. Wang	193
90	Modelling and Numerical Analysis of Rain-Wind Induced Vibrations C. Seidel and D. Dinkler	195
91	Modelling of Complex Vibratory Behaviours of Nuclear Power Plant Components based on a Vector ARMA Method D. Daucher, M. Fogli and D. Clair	197
IX	Biomechanical Simulations Session organised by A. Eriksson	199
92	Parallel Computing for Large Scale Stress Analysis of the Shape Adaptation of Bone Microstructures	201
	T. Yamada, K. Tsubota and A. Makinouchi	201
93	T. Yamada, K. Tsubota and A. Makinouchi A Comparative Study of the Hemodynamic Hypotheses for the Generation and Development of Atherosclerosis S.H. Suh, H.W. Roh, H.M. Kwon and B.K. Lee	201
93 94	T. Yamada, K. Tsubota and A. Makinouchi A Comparative Study of the Hemodynamic Hypotheses for the Generation and Development of Atherosclerosis S.H. Suh, H.W. Roh, H.M. Kwon and B.K. Lee Sports Biomechanics: Kinetic Analysis of Exercise using Inverse Dynamics and Pressure Insoles R. Santos-Rocha and A. Veloso	203 205
93 94 95	T. Yamada, K. Tsubota and A. Makinouchi A Comparative Study of the Hemodynamic Hypotheses for the Generation and Development of Atherosclerosis S.H. Suh, H.W. Roh, H.M. Kwon and B.K. Lee Sports Biomechanics: Kinetic Analysis of Exercise using Inverse Dynamics and Pressure Insoles R. Santos-Rocha and A. Veloso The Relationship Between Sound Waves and Ear Ossicle Chain Movements K. Pellant, D. Dušek and K. Přikryl	203 205 207

97	Temporal Finite Element Descriptions in Structural Dynamics A. Eriksson	211
98	Intervertebral Kinetics Modelling and its Simulated Biological Control M. Otáhal, S. Otáhal and M. Sochor	213
99	Simulation of the Cerebrospinal Fluid Transportation J. Otáhal, F. Maršík, Z. Brož and S. Otáhal	215
100	Application of the Boundary Element Method to the Simulation of Surgery including Haptic FeedbackP. Wang, A.A. Becker, A.T. Glover, S.D. Benford, C.M. Greenhalgh,M. Vloeberghs and I.A. Jones	217
101	Three-Dimensional Model of Cementless Acetabular Cup Migration J. Jíra, O. Jiroušek, J. Jírová and M. Micka	219
102	Finite Element Models of Parts of Human Musculosceletal System Constructed from CT Data O. Jiroušek, J. Jírová, J. Jíra and J. Máca	221
103	Selection of the Cost Function for Determination of Muscle Forces T. Phanindra and S. Majumdar	223
104	Modelling of Basilar Membrane Excitation K. Pellant and D. Dušek	225
X	Computational Stochastic Structural Analysis and Optimization Session organised by K. Marti and G.I. Schuëller	227
105	A Hierarchical Parallel Solver for Stochastic Finite Element Equations H.G. Matthies and A. Keese	229
106	Non-Linear Stochastic Finite Element Analysis of Shells with Non-Homogeneous Random Imperfections V. Papadopoulos and M. Papadrakakis	231
107	On the Generalised Perturbation-Based Stochastic Finite Element Method M. Kamiński	233
108	Non-Linear Systems Driven by White Noise Processes and Handled by the Characteristic Function Equations	235
	M. Di Faola and G. Cottone	

110	Validation of Spacecraft Structural Dynamic Models based on a Stochastic Methodology A. Calvi, M.A. Canay and M.T. Pavón	239
111	Exact Solutions for Some Statically Indeterminate Stochastic Beams G. Falsone and A. Sofi	241
112	A Multiscale "Trefftz" Computational Method for Medium- Frequency Vibrations of Assemblies of Heterogeneous Plates with Uncertainties L. Blanc, C. Blanzé and P. Ladevèze	243
113	Sampling Techniques for Sequential Kriging Metamodels in Robust Design Optimisation F. Jurecka, M. Ganser and KU. Bletzinger	245
114	A New Method of Automatic Concept Model Generation for Optimisation and Robust Design of Passenger Cars J. Hilmann, M. Paas, A. Hänschke and T. Vietor	247
115	Computation of Probabilities of Survival for Elastoplastic Mechanical Structures K. Marti	249
XI	Differential Quadrature, Generalised Methods and Related Discrete Element Methods Session organised by C.N. Chen	251
116	Differential Quadrature, Generalized Methods, Related Discrete Element Analysis Methods and EDQ Based Time Integration Method for Composite Structural Problems C.N. Chen	253
117	Analysis of Load Movement in Mining Mills A. Gutiérrez, L. Magne and A. Ortiz	255
118	Numerical Integration of Interpolation and Test Functions on any Convex Polyhedrons T. Fröbel and P. Milbradt	257
119	Contact Detection between Axially-Asymmetric Ellipsoids for Discrete Element Modeling S. Johnson, J.R. Williams and B.K. Cook	259
120	Generalized Collocation Methods for Rotational Shells Free Vibration Analysis	261
	E. Artioli, P.L. Gould and E. Viola	

XII	Stability of Inelastic Deformation Processes Session organised by I. Doltsinis and V.D. da Silva	265
122	Thin-Walled Member Plastic Bifurcation Analysis using Generalised Beam Theory R. Gonçalves and D. Camotim	267
123	On the Investigation of Material Stability during the Simulation of Ductile Damage in Metallic Materials F. Reusch and B. Svendsen	269
124	Stability of the FE Computation of Softening Plasticity using an Overlay Model V. Dias da Silva	271
XIII	Meshfree and Associated Methods	273
125	Some Practical Issues in the Implementation of Meshfree Methods with reference to the Method of Finite Spheres S. De	275
126	Element Free Analysis on a Mapped Plane T. Ohkami, E. Toyoshima and S. Koyama	277
127	A Meshless Dynamic Finite Element for Beam Vibrations including Rotary Inertia S.M. Hashemi and D. Pereira	279
128	Extension of the Fixed Grid Finite Element Method to Eigenvalue Problems F.S. Maan, O.M. Querin and D.C. Barton	281
129	The Application of RKPM for the Numerical Simulation of Pressure- Sensitive Material using a Cap Plasticity Model A.R. Khoei and M. Samimi	283
XIV	Static and Dynamic Re-analysis	285
130	Nonlinear and Dynamic Structural Analysis using Linear Reanalysis U. Kirsch and M. Bogomolni	287
XV	Structural Analysis and Graph Theory	289
131	Statics and Kinematics of Spherical Trusses F. Kovács and T. Tarnai	291
132	Transforming Knowledge to Structures from Other Engineering Fields by Means of Graph Representations O. Shai and D. Rubin	293

XVI	Finite Element Analysis, Modelling and Solution Methods	295
133	Modelling Three-Dimensional Effects in Single-Lap Bonded Joints using Interface Finite Elements M.F.S.F. de Moura, J.P.M. Gonçalves and P.M.S.T. de Castro	297
134	The Finite Element Method on Quadrilateral Meshes D. Boffi	299
135	An Assessment of Displacement Finite Elements for Couple Stress Elasticity E. Providas and M.A. Kattis	301
136	Validation of Various Linear Spring Stiffness Definitions for a Simple Physical Model for Vibrational Analysis of Cracked Beam Elements Subjected to a Combination of Transverse Loads M. Skrinar and T. Pliberšek	303
137	Dynamic Analysis of Flexible Risers with a Non-Linear Hybrid Frame Element D.L. Kayser Jr. and B.P. Jacob	305
138	Modelling of Unconstrained Cylindrical Bending Processes using the Finite Element Method G. Giuliano and S. Turchetta	307
139	On the Flexibility-based Solutions for Beam Elements with Bi-linear Material Model W. Barham, G.F. Dargush and A.J. Aref	309
140	A Benchmark for 3D Solid Finite Elements using Bending with Shear H. Werner	311
XVII	Boundary Element Methods	313
141	Boundary Element Analysis of Orthotropic Prismatic Beams D. Gaspari and M. Aristodemo	315
142	A Three-Parameter Boundary Element Formulation for Bending Plates under Initial Fields A.V. Mendonça and J.B. Paiva	317
143	A Complex Variables Technique for Evaluating Double Integrals in a Symmetric BEM M. Mazza and M. Aristodemo	319
144	Fracture Analysis of Mode III Problems by the Trefftz Boundary Element Approach J. Wang, Y.H. Cui, M. Dhanasekar and Q.H. Qin	321

XVIII	Steel Structures	323
145	Non-Linear Carrying Capacity of Asymmetric Three-Dimensional Braced Steel Frames R.C. Barros and M.B. Cesar	325
146	Finite Element Simulation of Cold-formed Steel Purlin-Sheeting Systems for Evaluating the Rotational Restraint K.B. Katnam, R. Van Impe, G. Lagae and M. De Beule	327
147	Finite Element Study of Nonlinear Behaviour of Steel Angle Tension Members P. Usha and V. Kalyanaraman	329
148	Studies on the Behaviour of Restrained Steel Columns Exposed to Fire J.P.C. Rodrigues	331
149	Large Deformation Elastic-Plastic Analysis of Uprights of Steel Racks A. Fadel, N. Abdel-Rahman, M. El-Sadaawy and S.A. Mourad	333
150	Analytical Evaluation of Local Buckling Behaviour of H-Section Steel Members T. Ohtsuka and S. Motoyui	335
151	Design of Welded Steel Beam-to-Column Connections with a T-Stiffener E.B. Machaly, S.S. Safar and M.A. Youssef	337
152	Genetic Algorithms Structural Optimisation of Beam-to-Column Semi-Rigid Joints F.B. Ramires, L.R.O. de Lima, S.A.L. de Andrade, P.C.G. da S. Vellasco and J.G.S. da Silva	339
153	A Non-Linear System for Semi-Rigid Steel Portal Frame Analysis A.A. Del Savio, S.A.L. de Andrade, P.C.G. da S. Vellasco and L.F. Martha	341
154	Numerical Evaluation of the Response of the Column Web Panel under Asymmetrical Patch Loading S. Jordão, L. Simões da Silva and R. Simões	343
155	Effect of Loss of Bolt Tightness on the Integrity of Butt Joints under a Biaxial Stress Field K. Ding and M. Dhanasekar	345
156	Numerical Analysis of the Buckling Behaviour of Rectangular Hollow Members A. Fülöp and M. Iványi	347
157	Seismic Design of MR Steel Frames with Slender Shear Walls G. De Matteis, A. Formisano and F.M. Mazzolani	349

158	Excel Spreadsheets for the Design of Steel Beams with Multiple Web Openings T.J. McCarthy, R. Schneider, N. Cunliffe and C. Barnshaw	351
159	Reliability Analysis of a Steel Frame with Semi-Rigid Connections Z. Balogh and M. Iványi	353
160	Non-Linear Simulation of Steel and Composite Steel/Concrete Beam-to-Column Connections R.Y. Xiao and F. Pernetti	355
XIX	Shakedown Analysis	357
161	Finite Element Shakedown Analysis of Two-Dimensional Structures G. Garcea, G. Armentano and S. Petrolo	359
162	Optimal Shakedown Design of Bar Systems: Strength, Stiffness and Stability Constraints J. Atkociunas and D. Merkeviciute	361
163	An Optimal Design Formulation according to some limited Ductility Behaviour A. Caffarelli, F. Giambanco and L. Palizzolo	363
XX	Reinforced Concrete Structures	365
XX 164	 Reinforced Concrete Structures A Comparison of Service Life Prediction of Concrete Structures using the Element-Free Galerkin, Finite Element and Finite Difference Methods H. Taghaddos, F. Mahmoodzadeh, A. Noorzad, S. Mohammadi and A. Ansari 	365 367
XX 164 165	 Reinforced Concrete Structures A Comparison of Service Life Prediction of Concrete Structures using the Element-Free Galerkin, Finite Element and Finite Difference Methods H. Taghaddos, F. Mahmoodzadeh, A. Noorzad, S. Mohammadi and A. Ansari Strength Optimum Design of Beams with MC90 M.H.F.M. Barros, A.F.M. Barros and C.C. Ferreira 	365 367 369
XX 164 165 166	 Reinforced Concrete Structures A Comparison of Service Life Prediction of Concrete Structures using the Element-Free Galerkin, Finite Element and Finite Difference Methods H. Taghaddos, F. Mahmoodzadeh, A. Noorzad, S. Mohammadi and A. Ansari Strength Optimum Design of Beams with MC90 M.H.F.M. Barros, A.F.M. Barros and C.C. Ferreira Bond Slip in Modelling of RC Structures for Engineering Practice L. Jendele and J. Červenka 	365 367 369 371
XX 164 165 166 167	 Reinforced Concrete Structures A Comparison of Service Life Prediction of Concrete Structures using the Element-Free Galerkin, Finite Element and Finite Difference Methods H. Taghaddos, F. Mahmoodzadeh, A. Noorzad, S. Mohammadi and A. Ansari Strength Optimum Design of Beams with MC90 M.H.F.M. Barros, A.F.M. Barros and C.C. Ferreira Bond Slip in Modelling of RC Structures for Engineering Practice L. Jendele and J. Červenka Analysis and Test of External Tendon Anchorage for Prestressed Concrete Girders L. Huang, K. Komine and H. Hikosaka 	365 367 369 371 373
XX 164 165 166 167 168	 Reinforced Concrete Structures A Comparison of Service Life Prediction of Concrete Structures using the Element-Free Galerkin, Finite Element and Finite Difference Methods H. Taghaddos, F. Mahmoodzadeh, A. Noorzad, S. Mohammadi and A. Ansari Strength Optimum Design of Beams with MC90 M.H.F.M. Barros, A.F.M. Barros and C.C. Ferreira Bond Slip in Modelling of RC Structures for Engineering Practice L. Jendele and J. Červenka Analysis and Test of External Tendon Anchorage for Prestressed Concrete Girders L. Huang, K. Komine and H. Hikosaka Finite Element Simulation of Arching Action in Restrained Slabs D.J. Robinson, S.E. Taylor and G.I.B. Rankin 	 365 367 369 371 373 375

170	Cracking Behavior of RC Panels under Biaxial Stresses H.G. Kwak and D.Y. Kim	379
171	Effect of Expansion and Shrinkage on Deformation and Stresses of Reinforced Concrete Frames H.A. El-Ginidy and S.A. Mourad	381
172	Plastic Hinge Model for Reinforced Concrete Beams S. Lopes and R. do Carmo	383
173	Reinforced-Concrete Twisted Beams D. Zupan and M. Saje	385
174	Modelling the Behaviour of RC Girders Tested to Failure J. Pencik	387
175	Reliability Analysis of RC Columns Strengthened by Post-Tensioning J. Pencik and A. Florian	389
176	An Empirical Model for Curvature Ductility of Reinforced High- Strength Concrete Sections O.M.O. Ramadan and S.F. Kansouh	391
177	Numerical Analysis of Punching Shear of High-Strength Steel Fiber Concrete Slabs A.A. Hassan and S. Abd-Elbaky	393
178	SDOF System Demands for Performance-Based Design of RC Structures B. Taskin	395
179	The Effect of Creep on the Behaviour of RC Frames in Fire S. Bratina, F. Saje, M. Saje and I. Planinc	397
180	Nonlinear Finite Element Analysis of Fiber Reinforced Concrete S.A. Saif Eldeen and T. Taniguchi	399
181	Damage Modelling of Reinforced Concrete Beams and Slabs F. Sanches Jr. and W.S. Venturini	401
182	Efficient Reliability Analysis of RC Grids by Response Surface Methods R.A. Neves, A. Mohamed, W.S. Venturini and M. Lemaire	403
XXI	Composite Structures	405
183	Free Vibration of Laminated Composite Plates resting on Winkler Foundations A.E. Assan	407
184	Analysis of Concrete-Timber Panels and T-Beams N.T. Mascia, J. Soriano and E.A. Nicolas	409

185	A Numerical Method to Determine the Characteristic Lengths of Composite Joints J.H. Kweon, J.H. Choi, J.W. Jung and S.G. Lee	411
186	Failure Load Prediction of Mechanically Fastened Composite Joints using the Failure Area Index Method J.H. Choi, C.O. Ryu, J.H. Kweon and G.M. Lee	413
187	Composite Structures made of Paper Laminates H. Rothert	415
188	Exact Solution of Multi-Layered Continuous Beams with Inter-Layer Slip S. Schnabl, I. Planinc, B. Čas, M. Saje and G. Turk	417
189	Partial Interaction Analysis of Composite Beams by Means of the Finite Difference Method, the Finite Element Method, the Direct Stiffness Method and the Analytical Solution: A Comparative Study G. Ranzi, M.A. Bradford, F. Gara and G. Leoni	419
190	Free Vibration Analysis of a Spinning Composite Beam using the Dynamic Stiffness Method J.R. Banerjee and H. Su	421
191	A Generic Fiber Model Algorithm for the Analysis of Arbitrary Cross Sections under Biaxial Bending and Axial Load A. Charalampakis and V. Koumousis	423
XXII	Masonry Structures	425
192	A Numerical Method for the Stability Problem of Masonry Elements B. Pintucchi and N. Zani	427
193	Design of Double Curvature Masonry Vaults by Eladio Dieste D. Theodossopoulos and R. Pedreschi	429
194	Capacity Analysis of Textile Retrofitted Unreinforced Masonry I. Kalker, B. Toll, S. Holler and C. Butenweg	431
195	Masonry Micro-Modelling adopting a Discontinuous Framework J. Pina-Henriques and P.B. Lourenço	433
XXIII	Homogenisation: Techniques and Applications	435
196	Non-Linear Homogenization of Quarry Masonry M. Šejnoha, V. Blažek, J. Zeman and J. Šejnoha	437
197	Multiscale-Based Constitutive Modeling of Regular Natural Stone Masonry J. Novák, J. Zeman and M. Šeinoha	439

198	Masonry Homogenization: Failure Envelope Predictions A. Mahieux and T.J. Massart	441
199	A Micro-Macro Approach for Crack Propagation with Local Enrichment PA. Guidault, O. Allix, L. Champaney and JP. Navarro	443
200	Homogenization of Stone Masonry with Irregular Geometry J. Zeman, M. Šejnoha and J. Šejnoha	445
201	Evaluation of the Failure Criterion for Masonry by Homogenisation M. Mistler, C. Butenweg and A. Anthoine	447
202	Applications of the Multi-Level FEM to Structural Masonry Computations T.J. Massart, R.H.J. Peerlings and M.G.D. Geers	449
203	Modeling of Sandwich Structures and Localisation of 3D Displacements and Stresses M. Guessasma, A. Saidi and P. Coorevits	451
XXIV	Concrete Modelling	453
204	Progression of the Crack Surface Formation in the Fracture Process Simulation of Cement Based Materials S. Berton, J.E. Bolander and H. Hikosaka	455
205	Thermal Response of RCC Dams Considering the Effect of Placement Schedule M.S. Jaafar, K.H. Bayagoob, J. Noorzaei, A.M. Waleed and R. Amini	457
206	Computational Model of Mesoscopic Structure of Concrete for Material Optimization J.P.B. Leite, V. Slowik and V. Apel	459
207	Material Model of Hardening Concrete with Uncertainties P. Štemberk and J. Kruis	461
208	Assessment of GRC Façade Panels Mechanical Behaviour with the FEM J. Ribeiro Correia, J. Ferreira and F. Branco	463
209	Fracture and Tension Softening of High Performance Fibrous Concrete R.Y. Xiao and C.S. Chin	465
XXV	Timber Structures	467
210	Buckling Behaviour of Layered Wood Columns B. Čas, M. Saje and I. Planinc	469

211	Evaluation of Timber Roof Structures using Close Range Photogrammetry Data J.C. Caamaño, P. Arias, A. Badaoui and H. Lorenzo	471
212	3D FEM Models for Timber-Concrete Joints A. Dias, J.W. van de Kuilen, S. Lopes and H. Cruz	473
XXVI	Tension Structures	475
213	Non-linear FE Analysis of Tension Structures used to Stabilize the External North Façade of Pad 19-20 in the Fiera di Bologna: Comparison of Two Different Proposed Solutions R. Gori, M. Majowiecki and A. Mastropasqua	477
214	On the Accuracy of Non-Linear Dynamic Analysis of Cable Structures M. Barghian and S.N. Amiri	479
215	Time-Dependent Analysis and Simulation-Based Reliability Assessment of Suspended Cables with Rheological Properties S. Kmet, M. Tomko and J. Brda	481
216	Mechanics and Structure of Spider Webs A.S.K. Kwan	483
XXVII	Analysis and Design of Building Structures	485
217	Dynamic Analysis of Multi-Bay Stiffened Coupled Shear Walls O. Aksogan, M. Bikce and H.M. Arslan	487
218	Tall Buildings: Design and Behaviour P. Jayachandran	489
XXVIII	Bridge Engineering: Analysis and Design	491
219	Dynamical Response of Composite Footbridges Due to Pedestrian Loads J.G.S. da Silva, L.R.O. de Lima, P.C.G. da S. Vellasco, S.A.L. de Andrade, F.P. Figueiredo and A.V. de A. Mello	493
220	A Numerical Model for Measuring the Wheel-Rail Contact Force resulting from a Dipped Joint D.P. Hegarty, D.W. O'Dwyer and B. Basu	495
221	Structural Modeling of a Bridge-Road-Vehicle Dynamic Interaction System	497
	11. Trassif, T.A. Mainas and D. Tukser	

222	Semi-Analytic Solution for Nonuniform Euler-Bernoulli Beams under Moving Forces A.E. Martínez-Castro, P. Museros and A. Castillo-Linares	499
223	Wheel-Rail Contact Forces in High-Speed Simply Supported Bridges at ResonanceP. Museros, A. Castillo-Linares and E. Alarcón	501
224	Determination of the Fatigue Life of a Large Span Railway Bridge R. Gallagher, D.W. O'Dwyer and M. Hartnett	503
225	Consistency of Buffeting Analysis in Time and Frequency Domains for Long Span Bridges Y. Li, H. Liao and S. Qiang	505
226	Numerical Aeroelastic Analysis of a Cable Stayed Bridge with a Π Cross Section A.V. Lopes, A. Cunha and L.M.C. Simões	507
227	Semi-Active Fuzzy Logic Control of Suspension Bridge Flutter S. Pourzeynali and T.K. Datta	509
XXIX	Dynamics and Vibration of Structures	511
228	Non-linear Finite Element Analysis of Truss Structures under Follower Forces JT. Chang and ID. Huang	513
229	A Jacobi–Davidson Type Projection Method for General Nonlinear Eigenproblems H. Voss	515
230	Solution of the Dynamical Problem of Pantograph-Catenary Interaction: A High Performance Computing Approach E. Arias, J. Benet, P. Bruis, F. Cuartero and T. Rojo	517
231	Finite Element Dynamic Analysis of Geometrically Exact Beams M. Gams, M. Saje, S. Srpčič and I. Planinc	519
232	On a New Computational Approach for Transient Dynamics over the Low and Medium Frequency Ranges for Complex Engineering Structures M. Chevreuil, P. Ladevèze and Ph. Rouch	521
233	Vibration Analysis of a Clamped-Clamped Beam with Axial Load and Magnetic Field T-P. Chang and M-F. Liu	523
234	Optimal Active Suspension System Subject to Stationary Random Road Surfaces M. Senthil Kumar, S. Vijayarangan and A. Mohandoss	525

235	Analysis of Waves Generated by Structure and Layered Half-Space Interaction I. Špacapan and M. Premrov	527
236	Experimental Analysis of a Steel Water Tank Tower J. Benčat	529
237	The Dynamic Characteristics of a Concrete Building from Construction to Completion E. Wahyuni and T. Ji	531
238	Dispersive Properties and Bifurcation of the Second Spectrum for Timoshenko's Flexural Waves in Numerical Simulations J.E. Laier	533
XXX	Inverse Analysis, Damage Detection, Accoustic Emission and Signal Processing	535
239	Numerical-Experimental Identification of the Elastic Properties in Composite Shells J. Cugnoni, Th. Gmür and A. Schorderet	537
240	Application of the Damage Location Vector Method in Crack Detection D. Huynh and D. Tran	539
241	Structural Damage Analysis of a Frame Structure Model using Filtering Algorithms R. Endo and N. Tosaka	541
242	Solution Analysis of Denoising Equations Related to the Mumford- Shah Functional H. Gu and S. Kindermann	543
243	Numerical, Analytical and Experimental Investigation of Acoustic Emission Waves in an Isotropic Plate RR. Naber, H. Bahai and B.E. Jones	545
244	Nondestructive Damage Evaluation of Plates B.H. Kim, N. Stubbs and T. Park	547
245	Detection of Damage Level and Location in Structures using Measured Natural Frequencies M.A.N. Abdel-Mooty and A.S. Hashad	549
XXXI	Buckling and Stability Problems	551
246	Static and Dynamic Stability of Frames with Linearly Tapered Columns S.C. Kim, S.G. Lee, Y.J. Moon and C.Y. Song	553

247	Lateral-Torsional Buckling of Tapered Thin-Walled Beams: 1D Formulation vs. Shell FE Analysis A. Andrade, D. Camotim and P.B. Dinis	555
248	Connection to a Disjointed Path using a Complex Bifurcation Solution T. Manabe, M. Kanazawa and N. Tosaka	557
249	Analytical Solution of a Beam Element for Elastic Buckling Analysis R. Adman and H. Afra	559
250	Numerical Analysis of the Axisymmetric Collapse of Cylindrical Tubes under Axial Loading M. Shakeri, A. Alibeigloo and M. Ghajari	561
251	The Structural Behaviour of Tube and Fitting Access Scaffolding Systems M.H.R. Godley and R.G. Beale	563
XXXII	Thin Walled Structures	565
252	Numerical Analysis of the Stress Distribution in Tube Structures with Multiple Internal Tubes K.K. Lee, K.J. Lee and H.S. Hwang	567
253	Stability Analysis of Thin-Walled Frames using a Shear-Flexible Beam Element G. Turkalj, D. Lanc and J. Brnić	569
XXXIII	Plates: Modelling and Analysis	571
254	Analytical Axisymmetric Finite Elements with Green-Lagrange Strains P. Pedersen	573
255	Buckling of Multi-Stiffened Metal Plates Fabricated by Non- Conventional Methods L.G. Vigh and I. Okura	575
256	Dynamic Relaxation Buckling Analysis of Viscoelastic Plates M. Salehi and A. Safi-Djahanshahi	577
257	Investigation of Natural Vibrations of Rectangular Plates of Variable Thickness with Different Boundary Conditions V. Budak and A. Grigorenko	579
258	Non-Linear Free Vibrations of Rectangular Plates: <i>u-v-w</i> Formulation K. El Bikri, R. Benamar and M.M.K. Bennouna	581

XXXIV	Shells: Modelling and Analysis	583
259	Dynamic Behavior of Non-Uniform Composite Cylindrical Shells Conveying Axial Flow M.H. Toorani and A.A. Lakis	585
260	Semiloof Element Formulation: New Computer Coding and Applications J. Noorzaei, M.S. Jaafar, W.A. Thanoon and J.N. Wong	587
261	Analytical Sensitivities for the Coupled Morphology Optimization of Linear Shells A. Petchsasithon and P.D. Gosling	589
262	Solid-Shell Finite Elements in Shell Structural Problems: A Comparative Analysis M.P.L. Parente, A. Roque, R.A. Fontes Valente, R.M. Natal Jorge, R.J. Alves de Sousa, J.M.A. César de Sá and J.J. Grácio	591
263	Buckling Loads of Small Cylindrical Shells under Axial Compressive Loads J. de Vries	593
XXXV	Earthquake and Seismic Engineering	595
264	Design of Viscous Dampers Connected to Amplifiers in Structures Subjected to High Magnitude Earthquakes Y. Ribakov and A.N. Dancygier	597
265	Vertically Hinged Anti-seismic System F. Bartolozzi	599
266	Correlation Coefficients of Modal Oscillators with Viscoelastic Memory A. Palmeri	601
267	Seismic Studies of Horizontal Joints in Large Precast Concrete Panel Walls F.A. Malhas, H. Nassif and M.G. Oliva	603
268	Modelling of Friction Pendulum Isolation Systems to Account for Different Types of Contact of the Articulated Part V. Koumousis and F. Michou	605
269	Tuned Liquid Dampers for Structural Applications: Experimental Evidence A. Baratta, O. Corbi and R. Orefice	607
270	Study of Rocking Response of Rigid Blocks using Shaking Table Experiments I. Corbi and R. Orefice	609

271	An Analytical Approach for Generating Design Response Spectra Compatible Accelerograms K. Behfar, H.E. Estekanchi and A. Vafai	611
272	Seismic Design of Steel Building Frameworks using Advanced Pushover Analysis Y. Gong	613
273	Influence of Stair Slabs in Reinforced Concrete Buildings under Seismic Loads J. Lavado and M.L. Gonzalez	615
274	Nonlinear Dynamic Analysis of RC Structures using Cyclic Moment- Curvature Relations H.G. Kwak and S.P. Kim	617
275	Spatial Variation of Ground Motion: Synthesis of Correlated Displacements M.P. Ferreira, J.H. Negrão and A.V. Lopes	619
276	Sensitivity of Seismic Structural Response of Multi-Storey Buildings to IBC-Compliant Response Spectra T.M. Nahhas and M.H. Imam	621
277	Seismic Control Devices for Machinery, Equipment and Buildings P. Nawrotzki	623
278	Analysis of Collapsed RC Structures under the Algiers Earthquake of May 21, 2003 N. Bourahla and S. Tafraout	625
279	Seismic Upgrade of Concrete Structures using Low Yield Metal Shear Panels E.S. Mistakidis, G. De Matteis and A. Formisano	627
280	Seismic Engineering Education: a Principal Key for Building Safety Y. Ribakov, I. Iskhakov and B. Blostotsky	629
XXXVI	Crashworthiness of Structures	631
281	Collapse Behaviour of Foam-Filled Structures M.S. Attia, S.A. Meguid, T.Y. Ng and L.S. Ong	633
282	Computational and Experimental Full-Scale Crash Analysis of a Road Safety Barrier Z. Ren and M. Vesenjak	635
283	Finite Element Method for Modelling of Composite Structures N.F.S. Lourenço, A.K. Pickett and N.A. Warrior	637

284	Train Crashworthiness Design using Response Surface Methodology R.N. Cadete, J.P. Dias and M.S. Pereira	639
285	Simplified Models for Simulation and Design of Crashworthy Structures J.P. Dias, F. Antunes and R. Corrêa	641
XXXVII	Metal Forming: Optimization and Control	643
286	Optimisation of Forging Process Parameters using Genetic Algorithms C.F. Castro, C.A.C. António and L.C. Sousa	645
287	Evolutionary Optimisation of Tool Shape Parameters in Sheet Metal Forming L.C. Sousa, C.A.C. António and C.F. Castro	647
XXXVIII	Structural Optimization	649
288	A Genetic Algorithm for Discrete Optimization of Space Trusses with Plastic Collapse Constraints A. Csébfalvi	651
289	Optimal Design of Machine Components using Notch Correction and Plasticity Models B. Wilczynski and Z. Mróz	653
290	Optimal Design of a Beam Subjected to Compression Forces in the Framework of Different Structural Models A. Samartin, J.C. Mosquera and C. Castro	655
291	A Simple Boundary Element Formulation for the Shape Optimization of Planar Structures L.M. Bezerra and J.C. Santos Jr.	657
292	Modified Level-Cut Approaches for Unique Design in Large-Scale Fuzzy Constrained Structural Optimization C.J. Shih and H.W. Lee	659
293	Maximizing Gaps between Eigenfrequencies in Two-Material Structures N.L. Pedersen	661
294	Optimum Geometry Design of Nonlinear Braced Domes using a Genetic Algorithm E.S. Kameshki and M.P. Saka	663
295	Optimisation of Imperfect Structures using Distributed Components M. Baitsch	665

296	Layout Optimisation of Elasto-plastic Structures subjected to Normal and Extreme Loads S. Kaliszky and J. Lógó	667
XXXIX	Topology Optimization	669
297	Application of the Mathematical Theory of Homogenization in Topology Optimization Problems Y. Wang and D. Tran	671
298	A Material Model for Topology Optimisation of Structures with Contact Conditions J. Folgado, P.R. Fernandes and H. Rodrigues	673
299	Stress-Limit based Topology Optimization Method CY. Lin and FM. Shu	675
Author Index		677
Keyword Index		685

Preface

This volume comprises the extended abstracts of contributed papers presented at The Seventh International Conference on Computational Structures Technology (CST 2004) held at Lisbon, Portugal, from 7 to 9 September 2004. The full papers from the conference are available on the accompanying CD-ROM. The CST conference series began in Edinburgh during 1991. The 2004 conference was held concurrently with The Fourth International Conference on Engineering Computational Technology (ECT 2004). The venue for both the 2004 conferences was the National Civil Engineering Laboratory (LNEC) in Lisbon.

The special sessions included in this volume of Proceedings are:

- Modelling and Simulation of Adaptive Beams and Bimorphs organised by Professor A. Benjeddou and Professor C.M. Mota Soares
- Modelling and Simulation of Adaptive Plates and Shells organised by Professor A. Benjeddou and Professor C.M. Mota Soares
- Modelling and Simulation of Composite Structures organised by Professor A. Benjeddou and Professor C.M. Mota Soares
- Computational Models for Multilayered Structures organised by Professor E. Carrera
- Failure Analysis for Composites: Engineering Approaches and Highly Sophisticated Models organised by Professor R. Rolfes and Dr Ing J. Teßmer
- Material Models and Finite Element Analysis organised by Dr M.H.B.M. Shariff
- Formulations and Computational Models for Finite Strains *organised by Dr J. Plešek*
- Non-Linear Dynamics of Structures and Mechanical Systems organised by Dr P.L. Ribeiro
- Biomechanical Simulations organised by Professor A. Eriksson
- Computational Stochastic Structural Analysis and Optimization organised by Professor K. Marti and Professor G.I. Schuëller

- Differential Quadrature, Generalised Methods and Related Discrete Element Methods *organised by Professor C.N. Chen*
- Stability of Inelastic Deformation Processes organised by Professor I. Doltsinis and Professor V.D. da Silva

We are particularly grateful to the organisers of these special sessions.

The following sessions are also included in this volume:

- Meshfree and Associated Methods
- Static and Dynamic Re-analysis
- Structural Analysis and Graph Theory
- Finite Element Analysis, Modelling and Solution Methods
- Boundary Element Methods
- Steel Structures
- Shakedown Analysis
- Reinforced Concrete Structures
- Composite Structures
- Masonry Structures
- Homogenisation: Techniques and Applications
- Concrete Modelling
- Timber Structures
- Tension Structures
- Analysis and Design of Building Structures
- Bridge Engineering
- Dynamics and Vibration of Structures
- Inverse Analysis, Damage Detection, Accoustic Emission & Signal Processing
- Buckling and Stability Problems
- Thin Walled Structures
- Plates: Modelling and Analysis
- Shells: Modelling and Analysis
- Earthquake and Seismic Engineering
- Crashworthiness of Structures
- Metal Forming: Optimization and Control
- Structural Optimization
- Topology Optimization

Other papers presented at the conferences in 2004 are published as follows:

- The Invited Lectures from CST 2004 are published in: Progress in Computational Structures Technology, B.H.V. Topping and C.A. Mota Soares (Editors), Saxe-Coburg Publications, Stirling, Scotland, 2004.
- The Invited Lectures from ECT 2004 are published in: Progress in Engineering Computational Technology, B.H.V. Topping and C.A. Mota Soares (Editors), Saxe-Coburg Publications, Stirling, Scotland, 2004.
- The Contributed Papers from ECT 2004 are published in: Proceedings of the Fourth International Conference on Engineering Computational Technology, B.H.V. Topping and C.A. Mota Soares, (Editors), (Book of Abstracts and CD-ROM), Civil-Comp Press, Stirling, Scotland, 2004.

These conferences could not have been organised without the help and support of many people. We would like to thank Professor Cristovão Mota Soares (IST) for all his kind help during the planning and organisation of these conferences. No trouble, task or problem was too great for him and we are grateful for his perseverance. We are also grateful to Professor Carlos Pina (LNEC) who so kindly helped us with the logistics of using the LNEC conference facilities.

We are grateful for Jelle Muylle (Civil-Comp Press) for designing and organising this and the other three volumes of conference proceedings (listed above). In addition, his development of the conference IT systems made sure that we could keep everything on track during the months of preparation of these volumes. The task was particularly onerous this year with more than twice the number of papers included in the four volumes than was originally anticipated. Once again we would like to thank Judy Tait (Civil-Comp Press) for her organisational skills, which were greatly appreciated.

We both wish to acknowledge and express our gratitude to the conference sponsors:

- Technical University of Lisbon,
- Instituto Superior Tecnico, Lisbon,
- National Laboratory for Civil Engineering (LNEC), Lisbon,
- International Journal of Computers & Structures (Elsevier Science Ltd), and
- Advances in Engineering Software (Elsevier Science Ltd).

Finally, we should like to thank the members of the CST 2004 Conference Editorial Board for their help before and during the conference: Professor H. Adeli, USA; Professor S. Ahmad, Bangladesh; Professor E. Alarcon, Spain; Professor H. Altenbach, Germany; Professor T. Aoki, Japan; Professor E. Arantes e Oliveira, Portugal; Professor F. Armero, USA; Dr H. Askes, Netherlands; Dr C.E. Augarde, UK; Dr A. Bahreininejad, Iran; Professor J.R. Banerjee, UK; Professor C.C. Baniotopoulos, Greece; Dr T. Baranger, France; Professor A. Baratta, Italy; Professor H.J.C. Barbosa, Brazil; Professor R.C. Barros, Portugal; Dr F. Bartolozzi, Italy; Professor K.J. Bathe, USA; Professor J.-L. Batoz, France; Professor S. Baxter, USA; Professor A.A. Becker, UK; Professor A. Benjeddou, France; Professor N. Bicanic, UK; Professor M.L. Bittencourt, Brazil; Professor Z. Bittnar, Czech Republic; Professor P. Boisse, France; Professor M. Bonnet, France; Professor P. Bouillard, Belgium; Professor M.A. Bradford, Australia; Professor F.A. Branco, Portugal; Professor D. Briassoulis, Greece; Dr M. Brunig, Germany; Professor M.L. Bucalem, Brazil; Professor T. Bulenda, Germany; Dr J.W. Bull, UK; Professor O.S. Bursi, Italy; Professor A. Carpinteri, Italy; Professor E. Carrera, Italy; Professor F. Casciati, Italy; Professor J.M.A. Cesar de Sa, Portugal; Dr S. Chandra, India; Dr D. Chapelle, France; Professor C.-N. Chen, Taiwan; Professor W.F. Chen, USA; Dr W. Chen, USA; Professor G.D. Cheng, China; Dr R.C. Cheng, USA; Professor J.L. Chenot, France; Professor Y.K. Cheung, Hong Kong; Professor G. Chiandussi, Italy; Professor C. Cinquini, Italy; Professor J.Y. Cognard, France; Professor M. Cuomo, Italy; Professor V.D. da Silva, Portugal; Professor S. De, USA; Professor R. de Borst, Netherlands; Professor J.B. de Paiva, Brazil; Professor G. De Roeck, Belgium; Professor C.S. Desai, USA; Prof. P.R.B. Devloo, Brazil; Dr M. Dhanasekar, Australia; Professor I. Doltsinis, Germany; Dr J. Duane, USA; Professor N.F.F. Ebecken, Brazil; Professor I. Elishakoff, USA; Professor A. Eriksson, Sweden; Professor H.A. Eschenauer, Germany; Professor M. Farshad, Switzerland; Professor C.A. Felippa, USA; Professor D.M. Frangopol, USA; Professor M.I. Friswell, UK; Professor M. Fuchs, Israel; Professor G. Gambolati, Italy; Professor L. Gastaldi, Italy; Professor J.-C. Gelin, France; Professor D. Givoli, Israel; Dr P. Gosling, UK; Professor P.L. Gould, USA; Professor R.V. Grandhi, USA; Professor D.E. Grierson, Canada; Dr A.A. Groenwold, South Africa; Professor F.C. Hadipriono, USA; Professor I. Hagiwara, Japan; Professor P. Hajela, USA; Professor H.-J. Hardtke, Germany; Professor G.R. Heppler, Canada; Professor J. Herskovits, Brazil; Professor H. Hikosaka, Japan; Professor G. Hofstetter, Austria; Dr M. Hoit, USA; Professor T.J.R. Hughes, USA; Professor A. Ibrahimbegovic, France; Professor H. Irschik, Austria; Dr I. Iskhakov, Israel; Professor T. Iwakuma, Japan; Dr E.S. Kameshki, Bahrain; Dr M. Kaminski, Poland; Professor T. Kant, India; Dr J.D. Kaplunov, UK; Professor B.L. Karihaloo, UK; Professor S. Kato, Japan; Professor J.T. Katsikadelis, Greece; Professor A. Kaveh, Austria; Dr A.I. Khan, Australia; Professor U. Kirsch, Israel; Professor E. Kita, Japan; Professor M. Kleiber, Poland; Professor L. Kossovich, Russia; Professor W.B. Kraetzig, Germany; Professor B.H. Kroeplin, Germany; Dr J. Kruis, Czech Republic; Dr A.S.K. Kwan, UK; Professor Y.W. Kwon, USA; Professor R. Lackner, Austria; Professor P. Ladeveze, France; Professor K.H. Law, USA; Professor K.L. Lawrence, USA; Professor D. Le Houédec, France; Dr J. de Paulo Barros Leite, Japan; Dr C.J. Leo, Australia; Professor A.Y.T. Leung, Hong Kong; Professor R. Levy, Israel; Professor R. Lewandowski, Poland; Dr X.K. Li, China; Professor A. Liolios, Greece; Professor S.H. Lo, Hong Kong; Dr P.B. Lourenco, Portugal; Mr J. Mackerle, Sweden; Professor I.A. MacLeod, UK; Professor G. Maier, Italy; Professor C.E. Majorana, Italy; Professor H.A. Mang, Austria; Professor K. Marti, Germany; Professor H. Matthies, Germany; Professor F.M. Mazzolani, Italy; Professor G. McClure, Canada; Professor S.A. Meguid, Canada; Professor C. Meyer, USA; Professor B. Moeller, Germany; Professor C.M. Mota Soares,

Portugal; Professor J.E. Mottershead, UK; Professor Z. Mroz, Poland; Prof A. Muc, Poland; Professor G. Muscolino, Italy; Professor R.M. Nieminen, Finland; Professor G.P. Nikishkov, Japan; Professor R. Ohayon, France; Professor E. Onate, Spain; Professor P.A. Pagliosa, Brazil; Professor E. Papa, Italy; Professor M. Papadrakakis, Greece; Professor P.Y. Papalambros, USA; Professor K.C. Park, USA; Dr Ing. B. Patzak, Czech Republic; Professor M.N. Pavlovic, UK; Professor N.L. Pedersen, Denmark; Professor P. Pedersen, Denmark; Professor J. Petrolito, Australia; Dr J. Plešek, Czech Republic; Professor C.P. Providakis, Greece; Dr E. Providas, Greece; Professor J. Rakowski, Poland; Professor C.V. Ramakrishnan, India; Professor E. Ramm, Germany; Professor O. Rand, Israel; Professor B.D. Reddy, South Africa; Professor J.N. Reddy, USA; Dr Y. Ribakov, Israel; Dr P.L. Ribeiro, Portugal; Dr A. Riccio, Italy; Professor H. Rodrigues, Portugal; Dr R. Rolfes, Germany; Professor C.T.F. Ross, UK; Professor H. Rothert, Germany; Professor G. Rozvany, Hungary; Dr D. Rypl, Czech Republic; Professor K. Saanouni, France; Professor M. Saje, Slovenia; Professor A. Samartin, Spain; Professor L.M. Santos Castro, Portugal; Professor E. Schnack, Germany; Professor G. Schuëller, Austria; Dr J. Scott, England; Professor H. Sekine, Japan; Dr O. Shai, Israel; Dr M.H.B.M. Shariff, United Arab Emirates; Professor L.M.C. Simoes, Portugal; Professor L.A. Simoes da Silva, Portugal; Professor L. Simoni, Italy; Dr J. Sladek, Slovakia; Professor S.W. Sloan, Australia; Professor J.D. Sorensen, Denmark; Dr R. Spallino, Germany; Professor Y. Sugiyama, Japan; Professor A. Suleman, Portugal; Professor K.Y. Sze, Hong Kong; Dr K. Tai, Singapore; Professor I. Takahashi, Japan; Professor I. Takewaki, Japan; Professor T. Tarnai, Hungary; Professor J.W. Tedesco, USA; Dr A. Tessler, USA; Dr Ing J. Tessmer, Germany; Professor G. Thierauf, Germany; Dr D. Tran, Australia; Professor Em. P. Trompette, France; Dr G.J. Turvey, UK; Professor M. Utku, Turkey; Professor F. van Keulen, Netherlands; Professor P. Venini, Italy; Professor W. Wagner, Germany; Professor X.S. Wang, USA; Professor N.-E. Wiberg, Sweden; Professor M. Wiercigroch, UK; Professor M. Witkowski, Poland; Professor M. Xie, Australia; Professor Y.-B. Yang, Taiwan; and Professor A. Zingoni, South Africa.

B.H.V. Topping and C.A. Mota Soares