
1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract 
 

Advancements in deep learning techniques have not only enhanced intuitive data 

analysis in structural design but have also facilitated the transfer of deep-level 

information. The microstructural features of biomaterials, termed "structural genes," 

inspire engineering design with their uniqueness and complexity, containing a wealth 

of potential optimization resources. Structural genes are categorized into three main 

groups based on their functions: structure and mechanical properties, fluid dynamics 

and substance exchange, and energy management and interaction. The construction 

of a deep information database founded on these structural genes adds a new 

dimension to materials science research and revitalizes structural optimization 

methods. This study refines the text-to-image model to construct a biomaterials 

database, integrating it into the topology optimization design. This integration allows 

the design process to incorporate nature's optimization strategies, generating 

engineering structures that meet mechanical requirements and possess bio-inspired 

characteristics. Experimental validation presented in this paper showcases a novel 

paradigm for functional biomimetic design. 
 

Keywords: deep learning, topology optimization, structural genes, text inversion, bio-

inspired design, materials library. 
 

1  Introduction 
 

Biomaterials in nature possess unique microstructural traits, revealing vast 

potential in engineering and materials science. Their microstructures grant remarkable 

mechanical and multiphysical properties. This has garnered substantial research 
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interest [1]. The application value lies in their capacity to inspire the development of 

new materials. These materials are lighter, stronger, and environmentally aligned.  In-

depth research and comprehension of these bio-microstructures could propel materials 

science.  It could also direct future engineering design trends. 
 

Microstructures can be categorized into three types based on function, as shown in 

Figure 1.  
 
 

 
Figure 1: Diagram illustrating the three categories of structural genes. 

 

 

Structure and mechanical properties; the physical and mechanical attributes of 

biological microstructures, such as stiffness, strength, and toughness, reflect the 

organism's mechanical adaptation to its structure. Examples include the Euplectella 

sp., nautilus, and ammonite sutures, etc. [2]. 
 

Fluid dynamics and substance exchange; the interaction between biological 

microstructures and fluids (liquids and gases), including fluid dynamic characteristics 

(such as lift and resistance), and the substance exchange (such as the transport of water 

and gases) conducted through these structures. Examples include dragonfly wings, 

shark skin, etc. [3-4]. 
 

Energy management and interaction; the interaction of biological 

microstructures with various forms of energy can be further subdivided into: 
 

Thermal energy management and electromagnetic interaction: involve thermal 

effects such as absorption, emission n, and insulation of heat, as well as reflection, 

transmission, and absorption of electromagnetic waves, including biologically 

generated electrical signals. Examples include cuttlefish bone [5]. 
 

Acoustic regulation: relates to the generation, propagation, and absorption of sound 

waves, including how microstructures affect acoustic properties. An example is the 

sonar-camouflaging earless moth [6]. 
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Optical properties: encompass reflection, refraction, scattering, and absorption of 

light, along with the visual effects produced by these processes. Examples include the 

Troides urvillianus and biophotonic gyroid materials T.opisena [7-8]. 
 

Structural topology optimization is an essential design method that aims to enhance 

performance for specific functions through material layout optimization. Its 

application has extended from purely mechanical structures to micro and macroscopic 

issues in heat exchange, piezoelectrics, fluids, and other physical fields. However, 

integrating topology optimization with biomimetic design, particularly in simulating 

complex biological microstructures, remains a significant challenge. Current research 

has made some progress but still falls short in accurately capturing the finesse, 

complexity, and functional relationships of biological microstructures. Moreover, 

current topology optimization methods often require substantial computational 

resources when addressing multi-scale and multifunctional structural design 

problems, limiting their application in engineering practice. 
 

Meanwhile, the rapid advancement of machine learning offers new research 

methodologies for bionics and materials science. By learning from and extending the 

features of biological microstructures, machine learning can not only increase the 

efficiency of structural design but also reveal complex patterns inherent in biological 

materials. Although studies have successfully applied machine learning techniques to 

achieve breakthroughs in bionics, these achievements are often limited to specific 

applications and are difficult to generalize to complex material systems. Therefore, 

establishing a comprehensive database of biomaterials, integrating deep information 

about bio-microstructures while considering the interconnected needs of functional 

characteristics and engineering applications, is crucial for enhancing the efficiency 

and effectiveness of biomimetic design in materials science. 
 

In this article, similar to how the arrangement of atoms within the material genome 

dictates material properties, 'structural genes' are defined as specific forms of material 

distribution that manifest unique structural performance. These abstract contents are 

translated from written descriptions into tangible image representations through text-

to-image generation and are propagated as structural genes within topology 

optimization. Going further, a structural gene database can be constructed via the text-

to-image model, facilitating the creation of innovative structures rich in experience 

and information. This approach aims to surmount the challenges of indistinct design 

requirements that cannot be met due to limitations in human experience or inadequate 

data. 
 

2  Methods 
 

The construction of a material library does not require training. The fine-tuning 

model used in this article is based on the Latent Diffusion Model (LDM) [9]. The 

LDM comprises two main components. The first component consists of an encoder 

and a decoder. The encoder, ℰ, is trained to learn the mapping of an image 𝑥 ∈ 𝒟𝑥 to 

a latent space encoding 𝑧 = ℰ(𝑥). The decoder, 𝐷, learns to map these latent encodings 
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back to the original image, satisfying 𝐷(ℰ(𝑥)) ≈ 𝑥 . The second component is a 

diffusion model trained to generate encodings within the learned latent space. Let 

𝑐𝜃(𝑦) be the model that maps a conditional input 𝑦 to a conditional vector. Thus, the 

loss function for the LDM is: 

𝐿𝐿𝐷𝑀 ≔ 𝔼𝑧~ℰ(𝑥),𝑦,𝜖~𝒩(0,1),𝑡 [‖𝜖 − 𝜖𝜃(𝑧𝑡, 𝑡, 𝑐𝜃(𝑦))‖
2

2
]                                (1) 

The variable 𝑡 denotes the time step, 𝑧𝑡 represents the latent noise at time 𝑡, 𝜖 is 

the unscaled noise sample, and 𝜖𝜃 represents the denoising network. During 

training, 𝑐𝜃 and 𝜖𝜃 are jointly optimized to minimize the loss of the LDM. In the 

inference phase, a random noise tensor is sampled and a new image's latent value 𝑧0

 is generated through an iterative denoising process. Finally, the latent code is 

transformed into an image by the pre-trained decoder 𝑥′ = 𝐷(𝑧0). 
 

The article employs the text-to-image model made publicly available by Rombach 

et al. [9], which contains 1.4 billion parameters and has been pre-trained on the 

LAION-400M dataset [10]. Here, 𝑐𝜃 is implemented using the BERT text encoder 

[11], where 𝑦 denotes the text prompt. In the research conducted by Gal et al. [12], 

the embedding space (also known as the latent space) is chosen as the target for 

inversion. The optimization objective can be defined as: 

𝑣∗ = arg min  
𝑣

𝔼𝑧~ℰ(𝑥),𝑦,𝜖~𝒩(0,1),𝑡[‖𝜖 − 𝜖𝜃(𝑧𝑡, 𝑡, 𝑐𝜃(𝑦))‖2
2]                       (2) 

The implementation is achieved by repetitively employing the same training 

scheme as the original LDM model, while keeping 𝑐𝜃 and 𝜖𝜃 unchanged. 
 

To import initial designs from the structural gene database into the topology 

optimization process for representation and description, it is necessary to characterize 

structural genes using mathematical expressions. This article utilizes the VGG-19 

model with pre-trained ImageNet weights to extract features of structural genes and 

compare them with features of optimization results. 
 

The style feature differences between the structural gene described by 𝒔 and the 

optimized structure described by 𝝆 can be measured using the following loss function: 

𝐿(𝝆, 𝒔) =  𝐿𝑠𝑡𝑦𝑙𝑒(𝝆, 𝒔) + 𝑤𝐿𝑡𝑣(𝝆),                                    (3𝑎) 

where 

𝐿𝑠𝑡𝑦𝑙𝑒(𝝆, 𝒔) = ∑ 𝑤𝑠𝑡𝑦𝑙𝑒
𝑙 𝐸𝑠𝑡𝑦𝑙𝑒

𝐿

𝑙=1

,                                           (3𝑏) 

𝐿𝑡𝑣(𝝆) = ∑ ((∇𝑥𝝆)2 + (∇𝑦𝝆)
2

)
1.25

,                               (3c) 

with 

𝐸𝑠𝑡𝑦𝑙𝑒(𝝆, 𝒔, 𝑙) =
1

4𝐶2𝑁𝑙
2𝑀𝑙

2 ∑(𝐺𝑚𝑛
𝑙 − 𝐴𝑚𝑛

𝑙 )2

𝑚,𝑛

,                (3𝑑) 

𝐺𝑚𝑛
𝑙 (𝝆, 𝑙) = ∑ 𝑅𝑚𝑘

𝑙 𝑅𝑛𝑘
𝑙

𝑘

,                                                       (3𝑒) 
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𝐴𝑚𝑛
𝑙 (𝒔, 𝑙) = ∑ 𝑆𝑚𝑘

𝑙 𝑆𝑛𝑘
𝑙

𝑘

.                                                        (3𝑓) 

In Equation (3), the 𝐿𝑠𝑡𝑦𝑙𝑒  function computes the difference in feature map 

responses in terms of style between the structural gene and the current optimization 

structure; 𝐿𝑡𝑣 represents the total variation loss, which serves to enhance the spatial 

smoothness of the generated image, thus avoiding excessive pixelation in the results. 

The symbol 𝑤𝑠𝑡𝑦𝑙𝑒
𝑙  denotes the weight coefficients for each convolutional layer, while 

𝑤 represents the weight coefficient for the total variation loss, which can be manually 

selected based on the specific problem. The degree of influence of structural genes on 

the optimization structure can be controlled by adjusting the value of the 𝐿(𝝆, 𝒔) 

function. 𝑅 and 𝑆 are the feature map responses of vectors 𝝆 and 𝒔 under the action of 

filtering functions. The symbol 𝑙 indicates the number of layers in the network (total 

𝐿); 𝐶 represents the number of channels, which is 3 for RGB color images; 𝑆𝑚𝑘
𝑙  and 

𝑅𝑚𝑘
𝑙  are the activations at position 𝑘 ∈ 𝑀𝑙 by the 𝑚-th filter (𝑚 ∈ 𝑁𝑙)) at layer 𝑙; 𝑁𝑙 

is the number of filters at layer 𝑙; 𝑀𝑙 is the size of the feature map; 𝐆𝑙 and 𝐀𝑙 are Gram 

matrices representing the inner product of the 𝑚-th and 𝑛-th feature maps at the 𝑙-th 

convolutional layer. 
 

The content feature differences between the structural gene described by 𝒔 and the 

optimized structure described by 𝝆 can be measured using the following loss function: 

𝐿(𝝆, 𝒔) =  𝐿𝑠𝑘𝑒𝑡𝑐ℎ(𝝆, 𝒔) + 𝑤𝐿𝑡𝑣(𝝆),                                    (4𝑎) 

where 

𝐿𝑠𝑘𝑒𝑡𝑐ℎ(𝝆, 𝒔) =
1

2
∑ (𝑅𝑚𝑘

𝑙 − 𝑆𝑚𝑘
𝑙 )

2

𝑚,𝑘,𝑙

,                                 (4𝑏) 

Equation (5) presents the expression for text-driven topology optimization within 

the two-dimensional SIMP framework, with structural compliance as the objective 

function, considering volume constraints and the loss function 𝐿(𝝆, 𝒔). 

Find    𝝆⊤, 𝒖                    

Minimize    𝐼 = 𝒇⊤𝒖      

S. t.                                                                          

𝐊(𝝆)𝒖 = 𝒇,            

𝑔1(𝝆) = 𝐿(𝝆; 𝒔) ≤ 𝜀, 

𝑔2 = ∑ 𝜌𝑒

𝑛

𝑒=1

𝑣𝑒 ≤ �̅�, 

𝒖 = �̅�, on  Γ𝑢, 

𝜌𝑖 ∈ [𝜌, 1] ∀ 𝑖 ∈ Ω,                                                    (5) 
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where, 𝑛 represents the total number of grids, and �̅� is the upper limit of the available 

solid material volume. The structural gene is introduced in the form of the formal 

constraint function 𝑔1. 

3  Results 
 

In this study, the material library results were obtained through fine-tuning based 

on two biological structures, as shown in Figure 2. Using the prompt "A black and 

white pattern of ammonites," a pattern similar to the features of ammonite sutures can 

be generated. Ammonite sutures are complex folded patterns on their shells that 

increase the contact area between the shell and the chamber septa, thereby enhancing 

the structural strength of the shell. This structure allowed ammonites to withstand 

deep-sea pressures and adapt to the deep-sea environment. For the Euplectella sp., its 

skeletal structure is composed of silica fibers, forming a highly ordered lattice 

structure. This structure provides great strength and stiffness while maintaining 

lightness and has the potential to prevent buckling deformation. 
 

As illustrated in Figure 3a, the example considers a structure subjected to pressure 

from four sides. The result of the optimization design based on pure compliance 

minimization is displayed in Figure 3b, with a resulting compliance of 𝐼 = 186.089. 

Incorporating the structural features of the Euplectella sp. into the topology 

optimization design, as shown in Figure 3d, results in a structure with a compliance 

of 𝐼 = 240.651 (Figure 3c). Although some stiffness is sacrificed in this process, the 

physical properties of the Euplectella sp. are well preserved. In addition, the sponge 

structure extends axially, possessing the capability to resist compressive loads, while 

its performance in the tangential direction is not as significant. Under the condition of 

compression from four sides, the optimization results show characteristics similar to 

the microstructure of the cedar cross-section (Figure 3e). Cedars primarily bear wind 

loads, and their rectangular honeycomb structure is arranged in the transverse section 

to resist the bending caused by lateral wind loads. These two structures show 

commonalities in providing lightweight support and resistance to compressive 

deformation of the cell walls. From the analysis of this example, the structural 

adaptation trends in biological evolution can be observed. 

 

4  Conclusions and Contributions 
 

This study proposes an improved text-guided topology optimization design method 

based on deep learning techniques. To implement this method, a biomaterial database 

encompassing structural genes was constructed and integrated into topology 

optimization design. This integration introduces optimization strategies from nature, 

generating engineered structures that meet mechanical performance requirements and 

exhibit bio-inspired characteristics. Experimental validation demonstrates a novel 

paradigm of functional biomimetic design. Subsequent research will further explore 

the precise conjunction of structural design with natural optimization strategies. 
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Figure 2: Text-guided material library fine-tuning results based on LDM. 

 

(𝑎) (𝑏) 

(𝑐) (𝑑) 

ammonites 

Euplectella sp. 

Prompt: A black and white 
pattern of ammonites. 

 

Prompt: A black and white 
photo of ammonites. 
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Figure 3: Topology optimization design example simulating biological evolution. 

(a) An example subjected to compression on four sides;(b) The pure compliance 

minimization result;(c) The optimized design referring to structural gene Euplectella 

sp.; (d) Structural gene Euplectella sp. obtained from Material library;(e) 

Microstructure of cedar wood. 

 

(𝑎) 

(𝑏) (𝑐) 

𝑭 = 𝟓 

𝑭 = 𝟓 

(𝑒) 

(𝑑) 
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