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Abstract 
 

This research investigates the optimal use of time integration methods to solve 

transient wave propagation problems in the coupling domain of bond-based 

Peridynamics with finite elements. We respectively study the numerical dispersions 

of  bond-based Peridynamics and finite elements with the central difference method 

and the Noh-Bathe time integration method. It reveals that the difference in numerical 

wave speed between FE and PD domain causes spurious wave reflection leading to 

inaccurate solutions. The study of the numerical dispersion reveals that the Noh-Bathe 

scheme can reduce the wave reflection, whereas the central difference method still 

causes the wave reflection between the domains. In the practical wave propagation 

problems, the Noh-Bathe scheme provides more accurate solutions than the central 

difference method.  
 

Keywords: wave propagation, direct time integrations, numerical dispersion, 

coupling, Peridynamics, finite element method. 
 

1  Introduction 
 

Peridynamic (PD) theory has been developed to simulate the fracture of structures 

efficiently [1,2]. In opposition to classical continuum theory such as the finite element 

method (FEM), Peridynamics does not assume the differentiability of displacement to 

obtain the forces, and it easily represents the discontinuity in the displacement field 

without special treatments.  
 

However, PD theory suffers from some drawbacks: 
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- PD methods are more computationally inefficient than those based on classical 

continuum theory since every point of PD grid interacts with all other points within 

its neighborhood [3]. 

- the enforcement of boundary conditions in PD grid may be complicated due to 

the problem of defining the boundary in a non-local theory [1]. 
 

In this regard, it would be effective to couple PD domain with FEM meshes to 

possess the advantages of both schemes. In most cases, cracks are likely to grow in a 

small part of the model, whereas the remaining parts follow the usual continuum 

theory, thus, the former would be discretized using a PD grid, and the latter would be 

modeled using a FE meshes. Among the studies, an effective strategy to couple PD 

grid with FEM was introduced by Zaccariotto et al. [4]. This coupling scheme can be 

easily implemented since there is no need to interpolate or transfer displacement and 

force. 
 

An inherent drawback of the coupling scheme is the appearance of spurious wave 

reflections. Reflections are usually observed when the waves propagate across the 

different numerical models. For example, the coupling scheme of PD with FEM 

introduced by Zaccariotto et al. also produces a spurious reflection on the interface of 

PD grids and FEM meshes. Therefore, there are researches on developing a coupling 

scheme to remove spurious reflection [5-7]. Although, these schemes somehow use 

the central difference time integration or the velocity verlet scheme. These time 

integration methods exhibit the accurate solutions when the lumped mass is used. Still, 

these may produce a spurious reflection on the coupling interface due to the difference 

in numerical wave speed.  
 

Therefore, this research aims to present the optimal use of direct time integration 

schemes to analyze wave propagations at the coupling boundary of bond-based 

Peridynamics and finite elements. We investigate the numerical dispersion of two 

time integration schemes with PD grids and FE meshes. The time integration schemes 

include the central difference method and the Noh-Bathe time integration method [8]. 

The theoretical performances of these time integration schemes to relieve spurious 

reflection are measured using the difference in numerical wave speed between PD 

grids and FE meshes. Then, to illustrate the practical performance of time integration 

schemes, we present several benchmark problems of 1D wave propagation.  
 

2  Methods 
 

To analyze the spurious reflection of the coupling interface, we first study the 

numerical dispersion of PD grids and FEM mesh. In the 1D case, we consider the 

nodes equally spaced Δx apart along the x-axis (Δx=h, h is the element size). Then 

the dispersion error caused by the spatial approximation is considered by the time-

independent form of the wave equation and the associated system algebraic equation 
 

 2

0 )(k h− =KU MU 0  (1) 
 



3 

 

where K, M, and U are the stiffness matrix, mass matrix, the vector of unknown, and 

k0 is the exact wave number. Note that the linearized form of PD grids and FE meshes 

is identically written as Eq. (1). However, the ways PD and FEM construct the 

stiffness matrix are different. The details to obtain the stiffness matrix for PD grids 

refer to Ref. [9]. 
 

We assume the solution of Eq. (1) to be the numerical sinusoidal waveform as  
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where Û  is the amplitude, yI is the position vector, and k is the solution wave number. 

Substituting Eq. (2) into Eq.(1), the algebraic system equation is rewritten as 
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Figure 2: The numerical dispersion for Peridynamics. 

(a) Central difference method (b) Noh-Bathe method 

Figure 1: The numerical dispersion for the finite element method. 

(a) Central difference method (b) Noh-Bathe method 
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Thus, we obtain a relationship between k and k0 from the determinant of Eq. (3) 
 

 2

0det( ( ) ) 0stiff massk h− =D D  (4) 

 

Next, the scalar wave equation is considered to observe the dispersion error that 

originates from the time approximation. the solution of the scalar wave is governed 

by 
 

 2
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and the solution of the scalar wave is given by 
 

 0 0 )( ti k
u Ae

 −
=

n y  (6) 

 

Figure 3: 1D wave propagation problem. 

(a) The description of 1D wave propagation  (b) The applied displacement 

Figure 4: Displacements at t = 1s with various CFL numbers 

(a) Central difference method  (b) Noh-Bathe method 
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where A is the amplitude, w0 is the exact angular frequency, and t is time, and n and 

y are the unit vector along the wave direction and the position vector, respectively. 

Substituting Eq. (6) into Eq.(5), we consider the scalar wave equation as follows 
 

 2 2

0 0 0k c uu + =  (7) 
 

and investigate the effect of the time integration method. The total numerical 

dispersion is then obtained by the errors from the spatial and time approximation. The 

details to obtain the dispersion error caused by the time integration scheme are 

introduced in Ref. [10]. 
 

3  Results  
 

The numerical dispersions of PD and FEM are shown in Figs. 1 and 2. The central 

difference method exhibits good numerical wave speed errors in PD and FEM for each 

CFL number. In contrast, the Noh-Bathe method shows worse numerical wave speed 

errors in PD and FEM than the central difference method. However, the key point is 

that highly inaccurate wave modes are discarded when the Noh-Bathe method is used. 

Recalling that spurious reflection originates from the difference in wave speed at the 

coupling interface, the property of the Noh-Bathe method in which high modes are 

discarded effectively reduces the difference in wave speed at the interface of coupling.  
 

Considering the 1D wave propagation problem shown in Fig. 1. We discretize the 

domain with the PD-FE coupling method proposed by Zaccariotto et al. [4]. The 

results in Fig. 4 show that the Noh-Bathe method performs better than the central 

difference method. In the central difference method, spurious wave reflection is 

observed at the coupling interface. Although the central difference method gives the 

exact wave speed in FEM, it provides the worst solution when CFL = 1 is used in the 

coupling domain since the central difference method does not delete high modes 

causing the reflection caused by the difference in wave speed. On the other hand, the 

Noh-Bathe method deletes the spurious reflection at the interface and gives an 

accurate solution when CFL = 1.8519 is used. 
 

4  Conclusions and Contributions 
 

In this research, we investigate the wave performance of direct time integration 

schemes at the coupling interface of Peridynamics and the finite element method. 

Spurious wave reflection originates from the difference in the wave speed, thus we 

respectively analyze the theoretical wave speed of Peridynamics and finite element 

method, and a difference in wave speed is observed. 
 

The dispersion properties of PD and FEM reveal that, although the central 

difference method gives the exact wave speed in FEM, the Noh-Bathe method shows 

more stable solutions than the central difference method since the former removes 

high modes that cause the difference in wave speed at the coupling interface, and the 

latter does not. 
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In the 1D wave propagation problem, as we expected, Noh-Bathe method gives 

more stable and accurate solutions than the central difference method. Moreover, 

since the Noh-Bathe method can use a larger time step, we verify that the Noh-Bathe 

method is a better time integration method for the PD-FEM coupling grids. 
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