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Abstract 
 
Recently, computational material models accelerated innovations by harnessing 
machine learning (ML) methods, but they face challenges. It is difficult to incorporate 
internal heterogeneity and diverse boundary conditions (BC’s) into existing ML 
methods, and weak interpretability of ML poses challenges. This paper generalizes a 
recently developed self-evolving computational material models framework built 
upon physics-ingrained ML-friendly new features via information convolution and 
the Bayesian evolutionary algorithm. This paper proposes a new material-specific 
information index (II), which is capable of autonomously quantifying the internal 
heterogeneity and diverse BC’s. Also, this paper introduces highly flexible cubic 
regression spline (CRS)-based link functions which can offer mathematical 
expressions of salient material coefficients of the existing computational material 
models in terms of convolved II. Thereby, this paper suggests a novel means by which 
ML can directly leverage internal heterogeneity and diverse BC’s to autonomously 
evolve computational material models while keeping interpretability. Validations 
using a wide spectrum of large-scale reinforced composite structures confirm the 
favorable performance of the generalization. Example expansions of nonlinear shear 
of quasi-brittle materials and progressive compressive buckling of reinforcing steel 
underpin efficiency and accuracy of the generalization. This paper adds a meaningful 
avenue for accelerating the fusion of computational material models and ML. 
 
Keywords: Evolutionary algorithm, cubic regression spline, computational material 
model, machine learning for heterogeneity, machine learning for varying boundary 
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1  Introduction 
 
Traditionally, computational material models (M’s) are derived from the statistical 
fitting of data sets obtained from well-designed small-scale laboratory experiments 
under specific boundary conditions (BC’s) to represent the analyses of real-world 
structures (Figure 1B). However, machine learning (ML) methods have approved 
their power in learning complex data over the past decades. Therefore, researchers in 
computational mechanics and structures sometimes apply different ML methods such 
as decision tree or deep learning to predict different targets in the structural system 
(Mangalthu et al. [1]; Lee and Lee [2]; Luo and Paal [3]) (Figure 1C). 

 
Figure 1: A comparison of (A) the proposed glass-box framework, (B) the 

traditional M’s, (C) the current ML-based approaches. 
 

Despite their meaningful contributions to our understanding of materials and 
structures, there are two critical challenges, the lack of interpretability and the limited 
description of the internal complexity of heterogeneous materials and diverse BC’s. 
In terms of the first challenge of interpretability, most existing ML methods rarely 
present detailed explanations behind the input-output relations, rendering them a 
“black-box” approach. Regarding the second challenge of incomplete data, ML 
approaches essentially depend on training the data sets obtained from the laboratory 
tests to develop an alternate model representing or replacing the constitutive model. 
However, these training data sets can hardly contain the entire space of all possible 
physical conditions. Therefore, to overcome the two critical challenges, this work 
adopts and generalizes a “glass-box” computational material model framework 
developed by Cho [4] (Figure 1A). The major novelty of the glass-box framework is 
twofold. First, it can combine fundamental physics principles and spatial convolution 
to generate convolved information index (II) so that ML autonomously identifies 
internal heterogeneity and complex BC’s within real-world structures. Second, the 
glass-box framework offers room for transparent link functions (LF’s) that can solve 
the hidden rules behind the material coefficients of adopted computational material 
mechanisms. However, in the initial work, the glass-box framework contains only two 
material models with a simple two-parameter form LF, requiring significant 
generality, flexibility, and expandability for broader applicability. This paper 
generalizes the glass-box framework by proposing a set of new convolved II’s 
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necessary for the extension to additional material mechanisms such as the nonlinear 
shear of cracked quasi-brittle materials and reinforcing steel’s progressive buckling 
mechanisms. Also, this paper generalizes the glass-box framework by including the 
cubic regression spline (CRS) (Wood [5]; Hastie and Tibshirani [6]).  

 

2  Methods 
 
There are significant similarities between the adopted glass-box framework and the 
convolutional neural network (CNN), in which both can provide a spatially weighted 
averaging to collect information from adjacent regions and come up with new 
information measures. However, the steps of the glass-box framework are 
straightforward and briefly summarized herein. More details can be found in Bazroun 
et al. [7]. 

 
Figure 2: Flowchart of the proposed glass-box framework. 

            
 As shown in Figure 2, convolved II first determines the laboratory-reality similarity 
and leads the ML method to internal heterogeneity and BC’s at the material point level 
inside the physical system (Figure 3). There is no limit to derive domain-specific II, 
and there is always sufficient room to include engineering principles or basic 
mechanics for the desired physical information. Hence, Bazroun et al. [7] proposed a 
new convolved II to help evolutionary ML improve significant material coefficients 
of a complex progressive reinforcing steel bar buckling model, which is highly 
challenging to capture by experimental efforts (Dhakal and Maekawa [8]). However, 
this new convolved II can quantify the impact of surrounding brittle materials on the 
reinforcing steel. Then, multiple LF’s of multiple M’s interact within the loops of 
generations and organisms in genetic algorithms (GA) and high-fidelity 
computational simulation platform (HFCS) for standard selection, spawning, and 
evolution of GA. Herein, LF seeks to offer a mathematical expression between 
convolved II and M. Hence, this work suggests a highly flexible CRS-based LF which 
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can be represented as Eq. (1). II-based perception of randomly embedded stiff 
materials (adapted from Bazroun et al. [7]). 

 
where 𝑎! is the unknown free parameter of the basis function, and 𝑏!(𝑥) is the ith basis 
function. Also, in terms of M, this study selects different microphysical mechanisms 
(Figure 4). First, the multi-directional, fixed-type smeared crack model is adopted 
since it can maintain the actual crack direction and accepts at most three orthogonal 
cracks (Thorenfeldt [9]; Taucer et al. [10]; Reinhardt [11]; Cho [12]). Next, this study 
adopts the nonlinear reinforcing steel bar mechanism based on the generalized 
Menegotto-Pinto hysteresis that can utilize the topological information of surrounding 
concrete’s damage of the center bar capable of describing progressive compressive 
buckling of the bar (Cho [13]). Finally, new experimental data of different test systems 
are used by Bayesian updates with the prior best of the LF to strengthen the best-so-
far LF. 

 
Figure 3: Examples of (a-d) II-based perception of stiff objects, BC’s, and (e-g) 

heterogeneity. 
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3  Results 
 
One of the notable strengths of the proposed glass-box framework lies in its 
expandability. Generally, its evolutionary algorithm is long gene-based storage that 
can be easily extended by adding more gene expressions for more material models 
(Fig. 5). Therefore, to investigate the proposed framework's performance, a 
rectangular wall (named WSH 5) and a U-shaped wall (named TUB) have been used 
to train the glass-box framework. The geometric, material properties, and 
reinforcement information of the two walls, experimented by Dazio et al. [14] and 
Beyer et al. [15], respectively, are summarized in Bazroun et al. [7]. 

 

 
Figure 4: Adopted microphysical mechanisms. 

 

 
Figure 5: The modularity of the glass-box framework. 
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 As shown in Figure 6, the best-so-far result for each wall compares the prediction 
in terms of force and displacements using the glass-box framework of 6- and 2-
coefficients (denoted as Model I and Model II, respectively) and a parallel multi-scale 
finite element analysis platform named VEEL (Cho [13]; Cho and Porter [16]). The 
results clearly show that the minimum error of the best-so-far generation of WSH5 
using Model I, which is 0.6%, is less than the default VEEL (4.3%) and Model II 
(0.7%). Also, using the prior best of WSH5 for testing TUB shows better accuracy in 
Model I than using Model II and default VEEL, in which the minimum error using 
Model I is 3.1% while it is 6.5% and 3.9% with using default VEEL and Model II, 
respectively. However, as shown in Figure 7, increasing generations increases the 
accuracy, but it costs more computational time and computing memory. 

 
Figure 6: Comparison between the accuracy of Model I (left column), Model II 

(right column), and VEEL for the walls WSH5 and TUB: (a) results for WSH 5; (b) 
results of north-south direction loading for TUB; (c) results of east-west direction 

loading for TUB. 
 Furthermore, Figure 8 shows that the framework can provide a mathematical 
expression since the GA can learn the hidden relationship between the convolved II 
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and material coefficients through LF using a single target LF. Hence, an example of 
identified physical rule about 𝛽	 and the II in a clear CRS form at the ith material point 
𝒙(!) can be given by 
 

𝛽)𝒙(!)* = 𝑎$ + 𝑎% × 𝐼𝐼/)𝒙(!)* +0 𝑎&'% × 𝑏&'%
(

&)$
𝐼𝐼/)𝒙(!)* 

= 𝑎$ + 𝑎% × 𝔼𝒩+𝒙("),.$/(𝐼𝐼) +0 𝑎&'% × 𝑏&'%
(

&)$
𝔼𝒩+𝒙("),.$/(𝐼𝐼) 

 

(2) 

 As proof of generality and versatility, extensions of the glass-box approach of this 
paper to nano-scale and millimeter-scale structures’ phenomena can be found in Cho 
et al. [17, 18]. 

 
Figure 7: Results of the gradual evolution. 

 
Figure 8: Material coefficients through an LF: (a) an example of material coefficient 
that affects the strength of the brittle material; (b) an example of material coefficient 

that affects the buckling of the reinforcement steel. 
 

4  Conclusions and Contributions 
 
This paper describes how to generalize the glass-box computational material 
framework by proposing (1) a new material-oriented convolved information index 
(denoted as 𝐼𝐼/0) and (2) highly flexible cubic regression spline (CRS)-based link 
function (LF), and the conclusion can be summarized as follow: (1) Convolved 
information index (II) can serve as physics-ingrained ML-friendly new features; (2) 
The new convolved II helps the glass-box framework leverages complex internal 
material heterogeneity and diverse BC’s inside large-scale structures; (3) The glass-
box framework can honor and leverage the existing material models while selectively 
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replacing the decisive material coefficients; (4) Testing the large-scale reinforced 
composite structures confirmed that CRS-based LF’s could improve accuracy 
compared to the manually calibrated high-fidelity simulations; (5) CRS-based LF 
plays an important role in identifying hidden rules between the convolved II and 
additional physical mechanisms; (6) The new convolved II demonstrates the 
expandability of the glass-box framework to incorporate a new material mechanism. 
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