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Abstract 
 

The current work aims to generalize topology optimization problem to scale-
dependent two-dimensional plates regarding micropolar and Eringen’s theory of 
elasticity. The material distribution maximizing the structural stiffness are obtained in 
the framework of solid isotropic material penalization approach, accompanied by 
density filter and Heaviside projection in order to ensure mesh independent binary 
solutions. The computational cost is reduced by integrating an element removal and 
re-introduction strategy. Several benchmark problems are investigated under the 
assumption of linear elasticity to clearly demonstrate the influence of internal length 
and different non-locality mechanism on final optimum configurations. 
 

Keywords: non-local, micropolar, Eringen, SIMP, optimization, finite element 
method 
 

1  Introduction 
 

The mechanical behaviour of materials with comparable internal and external length 
scales strongly depends on the nature of the underlying structure. To this end, non-
classical theories are utilized following their capability of maintaining the information 
of internal material organization while exploiting the field descriptions [1,2,3,4]. 
Depending on the nature of non-locality, these theories can be classified as 
implicit/weak and explicit/strong [4,5,6,7]; in the former class, the body is considered 
as a collection of particles enriched with additional degrees of freedom (DOFs) 
resulting in additional field equations, whereas in the latter, the equations of motions 
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contain different operators while preserving the primal fields of classical theory. 
Despite their popularity in describing the overall mechanical response of complex 
structures, till now only limited number of works have targeted their effect on 
structural optimization problem [8,9,10,11,12,13,14,15,16,17,18]. 

With this motivation, the present paper generalizes finite element (FE) based 
topology optimization to the two-dimensional (2D) size-dependent structures in the 
framework of weakly non-local Cosserat (micropolar) [4] and strongly non-local 
Eringen’s theories [19]. Each element is parametrized by material density that is 
linked to elasticity modulus following solid isotropic material penalization (SIMP) 
approach [20]. Numerical issues such as checkerboard pattern and mesh dependency 
are suppressed by means of density filter [21] while the undesirable transition region 
(i.e. the grey zone), emerged due to filtering is suppressed by means of Heaviside 
projection method [22]. Lastly, an element removal and reintroduction scheme [23], 
is embedded to the algorithms to increase computational efficiency and to avoid the 
misleading contribution of low density elements to structural analysis of Eringen's 
non-local model. Two example problems of practical importance are studied under 
the assumption of linear elasticity to compare and discuss the influence of small-scale 
parameters in different type of non-local theories by focusing on the resulting optimal 
material layouts. 

2  Methods 
 

In micropolar theory, the material particles are described in terms of their positions 
and rotations, hence the material deformation includes additional micro-rotational 
degree of freedom, , besides displacement, u. The corresponding field equations are 
given below for a body force and body couple neglected domain. 
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where M M, , ,ij kj ij kj    refer to strain, curvature, stress and couple-stress tensors with 

superscript M denoting micropolar theory. Note that the comma indicates derivation 
operation. The , , ,    appeared in constitutive equations being material constants 
related to micropolar theory, while ,   stand for generalised Lame’s constants: 
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with , ,E G  being the Young’s modulus, shear modulus and Poisson’s ratio, 
respectively. As for Eringen's theory of elasticity, the state of stress at a point; x  is 
related to strain of all the neighbouring points; x  within a certain proximity by means 
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of an attenuation type kernel function;  ,r   that accounts for the long‐range effects 

between source and neighbouring points depending on their Euclidean distance, r. 
Ignoring body forces, the field equations are as follows: 
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Independent of the continuum theory to be conducted, the topology optimization 
problem considered herein aims to find the optimal material distribution that 
maximizes the stiffness of a structure by minimizing the compliance function under a 
given set of constraints for a self-weight free domain: 
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where the displacement vector, u, stiffness matrix, K and total material volume, Vtot, 
depends on the design variables vector ρ with 0 and 1 referring to void and solid parts, 
respectively. c stands for the structural compliance function, while r indicates residual 
load vector, and g refers to constraint function limiting the material volume to a 
desired fraction, Vf, with V0 being the volume of the design domain. To satisfy the 
volume constraint, the initial density is taken equal to the volume fraction at the 
beginning of the algorithm; ini fV  . As the direct use of design variables in analysis 

causes the common issue of checkerboard pattern, and mesh dependence, the 
formulation needs to be improved through different schemes, such as density filtering. 
In this case, filtered densities, ρ are obtained by smoothing the original densities with 
taking into account the status of neighbour elements set, Nm, with the aid of a 
weighting function, w: 
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where mq is the center to center distance between elements m and q, while rmin refers 

to user defined filter radius. The drawback of density filter, causing a field with 
intermediate density values, is diminished by exploiting Heaviside projection method 
amplifying the continuous filtered field to desired binary solution: 

  ˆ 1 m
m me e     ρ     (6) 

with β tailoring the curvature of the Heaviside function. It should be noted that to 
ensure a stable convergence, Heaviside projection method is generally used with a 
continuation scheme in which β is gradually increased from an initial value, βmin, to 
βmax, as the optimization progresses, which are taken as 1 and 36. In this contribution, 
the problem given in Equation (4) is solved with establishing a gradient-based 
optimization procedure upon the optimality criteria approach with employing the 
fixed point iteration method: 
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where n is smoothing factor, and m is a positive-move limit which are taken as 0.5 
and 0.2, respectively. The sensitivity of compliance can be represented in terms of 
element stiffness matrices, M

0k , E
0k , E

0qqk , E
0nqk  and nodal displacements, M

qd  E
qd : 
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For explicit expressions of stiffness matrices, the readers refer to [18]. Following the 
SIMP method, that links physical densities and Young’s modulus for which Emin and 
E0 referring to the modulus of solid and void; 

     min 0 minˆ p
m mE E E E  ρ ρ   (9) 
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the gradient takes the following form: 
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Lastly, it should be mentioned that elements with physical densities below a 
prescribed threshold, tol , which is taken 0.2 in the current study, carry a negligible 

contribution to the physical response of the model; hence can be dismissed from the 
structural analysis, alongside with the nodes completely surrounded by such elements. 

3  Results 
 

Two example problems, including plates with and without cracks, are studied to 
show the effect of each theory on optimum configurations in a comparative manner. 
To this aim, simply supported intact plate and simply supported plate weakened with 
two edge cracks of length 0.0625L are considered (Figure 1). The latter one is 
modelled by detaching the nodes placed along the crack lines while for Eringen's 
model the distorting effect of discontinuity on diffusion process is simply accounted 
by intercepting the long‐range interactions traversing it. Note that the examination of 
a cracked domain may be regarded as the first step of finding optimal material 
distribution also in terms of prevention of crack initiation and propagation. 

 

Figure 1: Schematic of comparative examples; (a) intact, (b) weakened plates. 
 

The rectangular design domain, that has an aspect ratio of L/H=2, and subjected to a 
downwards force at the middle of its bottom edge, discretized into 8040 elements 
following the mesh independence of the procedure [18]. Numerical problem of hour-
glassing is avoided by modelling the concentrated load as a distributed one with a very 
small span; L/20, while optimization process is performed for the following parameter 
set:  

 max min tol1.0, 0.3, 0.5, 0, 36, 0.0375 , 0.20f iniE V r L            (11)
 

where various internal lengths are considered to observe the effect of non-locality: 
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Micropolar : 0.75, / 0.0125 0.0375

Eringen : 0.25, / 0.0125 0.0375
cN l L

L 
  
  

  (12)
 

Here the largest value of characteristic internal length is limited to 0.0375L to avoid 
the need of incorporation of geodetic path in Eringen's model while the coupling 
number, N, and the fraction coefficient, ξ, are kept fixed at 0.75 and 0.25, for which 
the material response is more sensitive to corresponding internal length scale of the 
continua.  

 

N= 0.75, lc = 0.0375L

 
c = 9.42 

 
c = 9.55

N= 0.75, lc = 0.0250L

 
c = 10.12 

 
c = 10.26 

N= 0.75, lc = 0.0125L

 
c = 10.63 

 
c = 11.03 

(a) (b) 

Figure 2: Optimum material distributions and corresponding compliances for 
different material properties of micropolar continuum considering comparative (a) 

intact and (b) weakened plates. 

From the evolution of the optimum topologies, illustrated in Figures 2 and 3, 
following deductions can be made. In micropolar medium (Figure 2), the scale effect 
unites the internal braces and thickens the junctions of them to the main arch, 
providing curved members instead of straight ones since the couple-stress tensor is 
highly affected by the parameter lc, given the high value of coupling number and 
dominant bending effects in the problem. It is easy to observe that there is no material 
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formation around the crack region in order to avoid stress singularity.  Moreover, 
additional branches on the bottom corners for lc=0.0125L and lc=0.0250L are lost in 
case of lc=0.0375L, and replaced with thicker connections to the main arch due to 
increased capacity of rotation resistance of the material points. As for strong non-local 
model, although no significant variation from Cauchy medium is present, as depicted 
in Figure 3, internal braces are slightly narrowed down. Similar comments apply to 
the case of cracked region. An increase in grey zones are observed for increasing non-
locality; however, note that use of geodetic path may have an effect on the final 
topology in this case.  

ξ= 0.25, κ = 0.0375L

 
c = 17.72 

 
c = 18.16 

ξ= 0.25, κ = 0.0250L

 
c = 16.02 

 
c = 16.54 

ξ= 0.25, κ = 0.0125L

 
c = 13.68 

 
c = 14.20 

(a) (b) 

Figure 3: Optimum material distributions and corresponding compliances for 
different material properties of Eringen continuum considering comparative (a) 

intact and (b) weakened plates. 

Finally, Figure 4 shows the contribution of the elements to the compliance in the 
optimized configurations for all the examples. These contributions are evaluated by 
calculating the strain energy of each element individually, and weighted with the total 
value of compliance in order to compare different theories. The extreme values at the 
loading and boundary regions are off the scale for all sub-figures, for the sake of 
seeing better the distribution. The Cosserat continuum seems to be the one with the 
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least strain energy gradient, which is pointing out its ability to distribute the load. It 
has the lowest compliance among all continua descriptors for both example problems. 
Although the final topologies of Eringen continuum are quite similar to that of 
Cauchy, the contribution of the internal braces to the compliance is lower than that of 
the main arms, on the contrary to Cauchy continuum. Moreover, the localized 
decrement of the stiffness around the boundaries due to missing neighbour relations 
in Eringen's theory has a negative impact on overall stiffness distribution, leading to 
the highest compliance values for all problems among the different continua 
considered herein. Lastly, İn all cases, the macro-scale optimum topologies are in 
accordance with the laws defining the interactions between material points in 
micro/nano/scale. 
 
 

4  Conclusions and Contributions 

Figure 4: Contribution of the elements to the compliance for different continua 
descriptors for intact (first row) and weakened (second row) plates 

Generalizing topology optimization method to non-classical continuum theories has 
the ultimate significance in maximizing the performance of size-dependent structures. 
To this aim, the formulation of standard FE-based optimization problem is extended 
to analyze the optimal material distributions in domains described on the basis of 
micropolar and Eringen’s theories as representatives of weak and strong non-local 
models, respectively. Based on the results, following interpretations can be made 
regarding the effect different non-locality mechanisms with different intensities: 

- The increased capacity of rotation resistance in micropolar case allows a 
dramatic reduction of structural compliance with the least gradient. 

Cauchy 
Eringen  

(ξ = 0.25, κ = 0.0375L) 
Micropolar  

(N = 0.75, lc = 0.0375L) 

c = 11.77  c = 17.72 c = 9.42

c = 12.32  c = 18.16 c = 9.55
 

0.00072 0.00008 
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- The topology of Eringen’s medium is mainly formed by the localized 
decrement of the stiffness that occurs around domain boundaries due to 
missing long-range interactions. 

- The macro-scale optimum topologies admit the physics of underlying lattice 
system with being in accordance with the response governed by particle 
interactions. 
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