
1

Abstract

This paper presents the hybrid parallelization of DEM software developed by using
OpenCL for shared-memory architectures and MPI for distributed-memory
heterogeneous resources. Resource-aware partitioning based on the weighted RCB
method adapts computational workload to heterogeneous Docker containers of the
OpenStack cloud. The execution time of benchmark on 7 heterogeneous containers,
including the container equipped by GPU, is reduced up to 32.6% of the execution
time obtained by using unweighted repartitioning. The speedup of parallel
computations up to 6.0 is measured on 8 heterogeneous containers. The replacement
of 3 faster containers by 3 slower ones slightly decreases the speedup up to 7.4% of
the speedup measured on 5 homogeneous containers.

Keywords: hybrid parallelization, discrete element method, resource-aware
partitioning, heterogeneous cloud resources, OpenCL, MPI.

1 Introduction

The discrete element method (DEM) [1] is widely used when materials require to be
simulated at the level of individual particles. However, the simulation of media at the
particle level of detail has the disadvantage of making DEM computationally very
expensive. Naturally, to solve the industrial-scale problems, parallel computing on
heterogeneous cloud resources is an obvious choice to increase computational
capabilities. The intentions to reduce memory consumption, improve load balancing
and better utilize available multicore resources motivated researchers to develop

Hybrid Parallelization of Discrete Element
Software for Heterogeneous Resources

O. Bystrov, R. Pacevič and A. Kačeniauskas

Department of Graphical Systems,

Vilnius Gediminas Technical University,
Lithuania

Proceedings of the Seventh International Conference on
Parallel, Distributed, GPU and Cloud Computing for Engineering

Edited by: P. Iványi, F. Magoulès and B.H.V. Topping
Civil-Comp Conferences, Volume 4, Paper 4.1

Civil-Comp Press, Edinburgh, United Kingdom, 2023
doi: 10.4203/ccc.4.4.1

Civil-Comp Ltd, Edinburgh, UK, 2023

2

hybrid parallelization of DEM software. Henty [2] implemented a hybrid
parallelization of the message-passing and shared-memory models for spherical
particles, but the pure MPI code was always more efficient than a hybrid scheme. The
LIGGGHTS DEM software [3] employed uses a Cartesian grid of subdomains with a
recursive multi-sectioning algorithm for global domain decomposition and RCB
method [4] for defining subsets of particles assigned to threads. Incardona et al. [5]
demonstrated the scalable framework OpenFPM for shared-memory and distributed-
memory implementations of particle and particle-mesh codes. Yan and Regueiro [6]
examined the hybrid MPI/OpenMP mapping schemes and influences of
memory/cache hierarchy for 3D DEM simulations. However, pure MPI
implementation achieved higher efficiently than hybrid MPI/OpenMP software. In the
discussed research, only OpenMP was used for shared-memory programming.

GPU has a higher parallel structure, which makes them very efficient for particle-

based computations. A few efforts have been made to use the combined GPU and MPI
technology [7]. However, the communication overhead among GPUs significantly
reduces the parallel performance because of the costly data transfer to the CPU
memory and the MPI communication among different nodes. It is worth noting that
only CUDA was employed for shared-memory programming on GPU together with
MPI technology for distributed-memory communications in the case of DEM
software. Very few attempts to exploit low-cost cloud resources for computationally
demanding DEM software have been reported in the academic literature [8]. However,
heterogeneity of cloud resources was not considered. This paper presents the hybrid
MPI/OpenCL parallelization of DEM software, employing resource-aware
partitioning for heterogeneous cloud resources.

2 Hybrid parallelization of DEM software

Hybrid parallelization of DEM software is developed to exploit the potential of
different types of memory and to simplify mapping of subsets of particles to
heterogeneous multi-core cloud resources. In the present research, the discrete
element model for granular flows of the non-cohesive frictional visco-elastic spherical
particles is considered. The dynamic behaviour of a discrete system is described by
the motion and deformation of the interacting individual particles within the
framework of Newtonian mechanics. An arbitrary particle undergoes motion
characterized by three translational and three rotational degrees of freedom. The
details of the governing equations, implemented model and conventional DEM
procedures can be found in [9].

2.1 Implementation of heterogeneous resource-aware partitioning

Partitioning well known as domain decomposition is implemented in the developed
DEM software as efficient coarse grain parallelization strategy for distributed-
memory architectures. The RCB method [4] from the Zoltan library [10] is used for
partitioning particles into subsets because it is highly effective for particle
simulations. Heterogeneous resources, such us containers of highly different
computing performance, can cause substantial load imbalance of the parallel software.

3

The percentage load imbalance measure λ quantifies the uneven distribution of
computational load by using the following formula:

max

avg

1 100%
L
L

λ
 

= − ⋅  
  (1)

where Lavg is the averaged load over all processes and Lmax denotes the largest load.
The time consumed by computational procedures is almost the exact measure of the
computational load. For resource-aware partitioning, the load is internally monitored
measuring the computing time by timers implemented in DEM procedures.

 Heterogeneity of resources is specified by different values of weights that result in
subsets of different size after repartitioning. New weight new

iW is computed according
to runtime measured computational load Li of parallel process i:

new old

avg

2 i
i i

L
W W

L
 

= ⋅ −  
  (2)

where old

iW is previous weight of process i. It is worth noting that these weights also
consider variations of application load and system load on virtualized hardware. Thus,
the previous weights help reducing significant oscillations that often occurs in
dynamic simulations. Finally, RCB-based repartitioning adapts subsets of particles to
heterogeneous resources according to runtime measured load of application-specific
computations.

 All computations are performed in the time loop. At the beginning of the time step,
the computational load is measured for resource-aware partitioning. Then,
repartitioning of particles into subsets is performed if one of two conditions is
satisfied. Commonly, repartitioning is performed if load imbalance exceeds the
predefined value. In the present research, more sophisticated approach is developed
according to specific needs of DEM computations. A small portion of communication
is required when MPI processes exchange particles as the particles move from one
subset to another. This communication is optional and should be performed only in
the case of a nonzero number of exchanging particles. However, information
exchange is necessary in each time step. Despite its local character, information
exchange and internode particle data transfer reduce the parallel efficiency of
computations. Therefore, this particle exchange is performed only during
repartitioning procedure. Moreover, skinning technique is employed to avoid frequent
repartitioning. To make contact with particle from another subset, internal particle
needs time to cross the ghost layer, which can be estimated [11]. Thus, sometimes
repartitioning should be performed with frequency defined by granular flow physics
despite low workload imbalance. Therefore, the first condition based on load
imbalance is supplemented by the second condition based on the frequency defined
by application physics. The subroutines of Zoltan library perform parallel
repartitioning for distributed-memory architectures. After repartitioning, migration of
particles from old partition to a new one should be handled. New ghost layers are

4

defined as well as ghost particles are registered. At the end of repartitioning code, data
of internal particles are transferred from the host memory to the OpenCL device
memory for main shared-memory computations. The main communications,
exchanging data of ghost particles between neighbouring partitions, are performed
before the main DEM computations. The main DEM procedures are carried out by
OpenCL kernels on shared-memory multicore nodes. At the end of the time step, the
results can be copied from the OpenCL device memory to the host memory and stored
on the hard disk drive.

2.2 OpenCL kernels

The main computational procedures of DEM are implemented by using OpenCL
kernels. Main kernels are performed on the thread per particle basis, which takes
advantage of the massive parallel computation capabilities of modern hardware and
can be considered to be the most suitable parallelism in the case of DEM
computations. The parallel algorithm for shared-memory architectures can be outlined
as follows. Kernel 1 performs the contact search by using the standard uniform grid
method. The output of the kernel contains the contact list. Kernel 2 handles the contact
history for friction force computations. The kernel maps the contacts of the previous
time step to the newly detected contacts of the current time step. Kernel 3 computes
the contact forces and the moments between all overlapped particles. Kernel 3 can be
treated as the main kernel because it performs the largest part of computations on a
thread per particle basis. Kernel 4 is aimed at computing the boundary conditions and
the external gravitational force. The last Kernel 5 performs the time integration by
using the explicit velocity Verlet algorithm [11].

2.3 MPI communication

After repartitioning performed by RCB method, some particles migrate from old
partition to a new one. Redistribution of particles requires internode communication
handled by MPI. The RCB method is attractive as a dynamic load balancing algorithm
because it implicitly produces incremental partitions and limits particle transfer
among nodes caused by repartitioning. At the end of repartitioning, MPI processes
exchange information of ghost particles, which is necessary for internode
communications performed before the main DEM procedures in each time step.

 On shared-memory multi-core node each OpenCL device performs computations
only on its subset of particles. However, it needs to share information with OpenCL
devices, working on other nodes, about particles that are near the division boundaries
in ghost layers. This internode communication is implemented by using MPI
subroutines. The main portion of communications is performed prior to the main DEM
computations. Data of ghost particles are exchanged between neighbouring partitions
by MPI. The exchange of positions and velocities of particles is a common strategy
often used in DEM codes [3] because it allows nodes independently to perform contact
search and computation of forces. It is worth noting that data of ghost particles,
transferred by MPI from other nodes at each time step, also should be copied to the
OpenCL device memory, which makes internode data exchange very expensive.

5

3 Performance Analysis

A gravity packing problem was solved on heterogeneous containers to measure the
parallel performance of the DEM software based on the hybrid MPI/OpenCL
implementation. The gravity packing problem was considered because it was
commonly employed as a performance benchmark [3], [8]. The solution domain was
assumed to be a cubic container with the 1.0m-long edges. Granular material, falling
under the influence of gravity, was presented by an assembly of 1000188 and 4000000
monosized particles. Half of the container was divided into cubic cells with particles
embedded into the cell centres. The initial velocities of the particles are defined
randomly, having their magnitudes over the range of [0.0; 0.1] m/s. 10000 time steps
equal to 1.0x10-8 s were performed, which resulted in the physical time interval of
0.0001 s. In the case of the considered benchmark, movement of particles with
skinning technique required to repartition subsets of particles at each 1000 time steps.

3.1 Cloud resources

The private cloud is built by using OpenStack Train 2019 version [12]. Compute
service Nova for virtual machines, compute service Zun for containers, image service
Glance, networking service Neutron, container network plugin Kuryr, block storage
service Cinder and identity service Keystone are deployed on the OpenStack cloud.
The parallel DEM software as a service is deployed on top of the provided platforms,
such as GNU compilers, OpenCL, Open MPI and the Zoltan library.

Cores Architecture RAM, [GB] HDD, [TB]

CN-6700-4 4 i7-6700 16 0.5

CN-4790-4 4 i7-4790 16 0.5

CN-E5-20 20 E5-2630 16 0.5

CN-GPU 1792 (CUDA) Tesla™ P100 12 0.5

Table 1: Characteristics of containers.

 The cloud infrastructure is composed of OpenStack service nodes and compute
nodes connected to 1 Gbps Ethernet LAN. Hardware characteristics of faster compute
nodes hosting the containers are listed below: Intel®Core i7-6700 3.40 GHz CPU, 32
GB DDR4 2133 MHz RAM, 34.13 GB/s memory bandwidth, and 1 TB HDD.
Hardware characteristics of slower nodes are listed below: Intel®Core i7-4790 3.60
GHz CPU, 32 GB DDR3 1866 MHz RAM, 29.87 GB/s memory bandwidth and 1 TB
HDD. The NVIDIA® Tesla™ P100 GPU (1792 FP64 CUDA Cores, 12GB HBM2,
549GB/s memory bandwidth) is installed on the node with following hardware
characteristics: Intel®Xeon™ E5-2630 2.20GHz 2xCPU, 32GB DDR4 2133MHz
RAM, 2x34.13 GB/s memory bandwidth and 1 TB HDD. Characteristics of containers
are provided in Table 1. Docker version 20.10.7 containers managed by Zun are used
in the cloud infrastructure. Ubuntu 20.04.3 LTS (Focal Fossa) is installed in the
containers. The container CN-GPU provides access to NVIDIA® Tesla™ P100 GPU.

6

3.2 Parallel performance

The parallel performance analysis is based on the speedup gained relative to a
sequential run of DEM software on cloud containers CN-6700-4 and CN-4790-4.
Figure 1 shows the parallel speedup as a function of the number of containers for the
benchmarks of 1000188 and 4000000 particles. The curve called Ideal illustrates the
ideal speedup. The curves with abbreviations HOM5, HET2+3 and HET5+3 shows
the speedup obtained on 5 homogeneous containers CN-6700-4, 2 faster containers
CN-6700-4 supplemented by 3 slower containers CN-4790-4 and 5 faster containers
CN-6700-4 supplemented by 3 slower containers CN-4790-4, respectively. The
abbreviations “1M” and “4M” represent the benchmarks of 1000188 and 4000000
particles, respectively.

Figure 1: Parallel speedup obtained on heterogenous resources.

 The parallel speedup is largely determined by the ratio of local OpenCL
computations over internode MPI communications. As the number of containers
increases, for a fixed problem size, the communication cost will eventually become
dominant over the local computation cost after a certain stage. This high ratio of
communication to computation makes the influence of a further reduction in the local
computation on the overall cost of running the application very small. The relative
communication cost is lower for larger benchmark of 4000000 particles than that for
smaller benchmark of 1000188 particles, therefore, higher speedup is observed for
larger benchmark. Speedups equal to 5.2 and 6.0 were measured, solving benchmarks
of 1000188 and 4000000 particles on 8 heterogeneous containers, respectively. The
obtained speedup values were close to those attained for relevant numbers of
homogeneous nodes in other performance studies of DEM software based on the
hybrid parallelization [3]. It is worth noting that hybrid parallelization eliminated
issues related to mapping of particle subsets to multicore nodes and improved speedup
obtained on uneven number of nodes [8]. The replacement of 3 faster containers by 3
slower ones slightly decreased the speedup measured on 5 containers from 3.94 to

7

3.72 and from 4.34 to 4.02 for benchmarks of 1000188 and 4000000 particles,
respectively. The observed decrease did no exceed 7.4% of the speedup measured on
5 homogeneous containers. In the case of smaller benchmarks, execution times
obtained by using weighted repartitioning were nearly equal to those attained by using
unweighted repartitioning. In the case of larger benchmark containing 4000000
particles, execution times of weighted repartitioning were shorter, but the observed
difference did not exceed 1.7% of the execution time of weighted repartitioning. The
percentage load imbalance of computations without weighting was low and varied
from 9.6% to 12.6%. Thus, low heterogeneity of resources indicated by low load
imbalance percentage limited the gain of weighted repartitioning.

3.3 Heterogeneous resource-aware partitioning

The ability of the developed DEM software to repartition subsets of particles
according to heterogeneous resources is presented in this subsection. Five containers
CN-6700-4 were supplemented by two powerful containers CN-E5-20 and CN-GPU
in the considered benchmark. Figure 2 shows time evolution of the execution time
(Figure 2a) and load imbalance (Figure 2b). The dashed curves represent results of
resource-aware partitioning with variable weights, while the solid lines represent that
of unweighted repartitioning, which leads to partitions of nearly equal size. It can be
observed that the percentage load imbalance measure of computations with
unweighted repartitioning approximately equals to 20%, which is higher than in the
previous case of eight heterogeneous containers. Therefore, the execution time was
reduced up to 32.6% of the execution time obtained by using unweighted
repartitioning. Thus, higher heterogeneity of resources indicated by higher load
imbalance percentage increased the gain of runtime resource-aware partitioning.
Generally, on one node the employed GPU performs DEM computations significantly
faster than the CPU [13], therefore, higher load imbalance percentage as well as gain
in execution time can be expected. Thus, detailed investigation of computational load,
weights and communication issues is required.

(a) (b)

Figure 2: Time evolution of the execution time (a) and load imbalance (b).

8

 Figure 3 presents time evolution of runtime measured computational load and
weights. Initially, the load of any container CN-6700-4 was approximately 3.5 times
higher than that of the container CN-GPU equipped by GPU (Figure 3a). The
difference in computational loads of containers CN-E5-20 and CN-GPU was lower.
The computational load of container CN-E5-20 was 2.5 times higher than that of the
container CN-GPU. The differences of computational loads were relatively higher
than the percentage load imbalance because the formula (1) compares the maximal
load with the averaged load. The load of any slower container serves as the maximal
load, while the averaged load is highly influenced by five slower containers CN-6700-
4 and reduced by two powerful containers CN-E5-20 and CN-GPU. After several
applications of resource-aware partitioning, all curves of computational load
approached the average. Some variation of CN-GPU load around the average can be
observed because of communication issues.

(a) (b)

Figure 3: Time evolution of the computational load (a) and weights (b).

 In Figure 3b, time evolution of weights shows that more than 11.5 times lower
weights were computed for partitions of the containers CN-6700-4 than those for
partitions of the container CN-GPU. Weights for the container CN-E5-20 were higher
than those for the container CN-6700-4, but the difference was not large, comparing
to the container CN-GPU equipped by GPU. The memory bandwidth bound DEM
computations did not allow exploiting computing power of 20 physical cores because
of comparatively low memory bandwidth of the CN-E5-20.

 Figure 4 shows time evolution of communication time (Figure 4a) and wait time
(Figure 4b). At the beginning of simulation interval, the rise of communication time
of the container CN-GPU was caused by the increased number of ghost particles.
Communication time of the container CN-GPU remained the largest during the whole
simulation time interval because of the same reason. Communication time of the other
containers chaotically oscillated due to regular application of repartitioning and
resulting irregular subsets of particles. At the beginning of simulation interval, the

9

fastest container CN-GPU quickly completed its computations and waited for the data
of neighbouring partitions. The runtime resource-aware partitioning increased the
computational load of the container, which gradually decreased its wait time (Figure
4b). At the beginning of simulation interval, wait time of the container CN-E5-20 was
also longer than that of the containers CN-6700-4, but the difference vanished after
two applications of repartitioning. At the end of simulation interval, the container CN-
GPU had so much data of ghost particles to send that other containers should wait for
data of neighbouring subsets even longer than CN-GPU. The RCB method does not
directly optimize internode communication, therefore, communication issues can
influence the load balance and overall performance of parallel software.

(a) (b)

Figure 4: Time evolution of communication time (a) and wait time (b).

4 Conclusions

In the present paper, the hybrid parallelization of DEM software developed by using
OpenCL for shared-memory architectures and MPI based resource-aware partitioning
for distributed-memory heterogeneous resources of the OpenStack cloud. The hybrid
parallelization eliminated issues related to mapping of particle subsets to multicore
nodes, especially, improving speedup on uneven number of containers. Sufficient
speedups equal to 5.2 and 6.0 were measured on 8 heterogeneous containers in the
case of 1000188 and 4000000 particles, respectively. The replacement of 3 faster
containers by 3 slower ones slightly decreased the speedup up to 7.4% of the speedup
measured on 5 homogeneous containers. The developed resource-aware repartitioning
handled heterogeneous cloud containers, supplemented with GPU, reducing the
execution time up to 32.6% of the execution time obtained by using unweighted
repartitioning.

10

References

[1] P.A. Cundall, O.D.L Strack, “A Discrete Numerical Model for Granular

Assemblies”, Géotechnique, 29, 47–65, 1979. doi:10.1680/geot.1979.29.1.47.
[2] D. S. Henty, "Performance of Hybrid Message-Passing and Shared-Memory

Parallelism for Discrete Element Modeling," in “SC '00: Proceedings of the
2000 ACM/IEEE Conference on Supercomputing”, Dallas, TX, USA, Paper 10,
2000. doi:10.1109/SC.2000.10005.

[3] R.Berger, C. Kloss, A. Kohlmeyer, S. Pirker, “Hybrid Parallelization of the
LIGGGHTS Open-Source DEM Code”, Powder Technol, 278, 234–247, 2015.
doi:10.1016/j.powtec.2015.03.019.

[4] M. Berger, S. Bokhari, “A Partitioning Strategy for Nonuniform Problems on
Multiprocessors”, IEEE Trans. Comput, C-36, 570–580, 1987.
doi:10.1109/tc.1987.1676942.

[5] P. Incardona, A. Leo, Y. Zaluzhnyi, R. Ramaswamy, I.F. Sbalzarini,
“OpenFPM: A Scalable Open Framework for Particle and Particle-Mesh Codes
on Parallel Computers”, Comput. Phys. Commun, 241, 155–177, 2019.
doi:10.1016/j.cpc.2019.03.007.

[6] B. Yan, R.A. Regueiro, “Comparison between Pure MPI and Hybrid MPI-
OpenMP Parallelism for Discrete Element Method (DEM) of Ellipsoidal and
Poly-Ellipsoidal Particles”, Comput. Part. Mech, 6, 271–295, 2018.
doi:10.1007/s40571-018-0213-8.

[7] J. Gan, T. Evans, A. Yu, “Application of GPU-DEM Simulation on Large-Scale
Granular Handling and Processing in Ironmaking Related Industries”, Powder.
Technol, 361, 258–273, 2020. doi:10.1016/j.powtec.2019.08.043.

[8] O. Bystrov, R. Pacevič, A. Kačeniauskas, “Performance of Communication-
and Computation-Intensive SaaS on the OpenStack Cloud”, Appl. Sci, 11, 7379,
2021. doi:10.3390/app11167379.

[9] A. Kačeniauskas, R. Kačianauskas, A. Maknickas, D. Markauskas,
“Computation and Visualization of Discrete Particle Systems on gLite-Based
Grid”, Adv. Eng. Softw, 42, 237–246, 2011.
doi:10.1016/j.advengsoft.2011.02.007.

[10] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, C. Vaughan, “Zoltan Data
Management Services for Parallel Dynamic Applications”. Comput. Sci. Eng,
4, 90–96, 2002. doi:10.1109/5992.988653.

[11] H.R. Norouzi, R. Zarghami, R. Sotudeh-Gharebagh, N. Mostoufi, “Coupled
CFD-DEM Modeling: Formulation, Implementation and Application to
Multiphase Flows”, Wiley, Chichester, West Sussex, United Kingdom, 2016.
doi:10.1002/9781119005315.

[12] OpenStack. Available online: https://www.openstack.org/ (accessed on 29
April 2023).

[13] R. Pacevič, A. Kačeniauskas, “The Performance Analysis of the Thermal
Discrete Element Method Computations on the GPU”, Comput. Inform, 41,
931–956, 2022. doi:10.31577/cai_2022_4_931.

