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Abstract 
 
This paper presents the hybrid parallelization of DEM software developed by using 
OpenCL for shared-memory architectures and MPI for distributed-memory 
heterogeneous resources. Resource-aware partitioning based on the weighted RCB 
method adapts computational workload to heterogeneous Docker containers of the 
OpenStack cloud. The execution time of benchmark on 7 heterogeneous containers, 
including the container equipped by GPU, is reduced up to 32.6% of the execution 
time obtained by using unweighted repartitioning. The speedup of parallel 
computations up to 6.0 is measured on 8 heterogeneous containers. The replacement 
of 3 faster containers by 3 slower ones slightly decreases the speedup up to 7.4% of 
the speedup measured on 5 homogeneous containers. 
 
Keywords: hybrid parallelization, discrete element method, resource-aware 
partitioning, heterogeneous cloud resources, OpenCL, MPI. 
 

1  Introduction 
 
The discrete element method (DEM) [1] is widely used when materials require to be 
simulated at the level of individual particles. However, the simulation of media at the 
particle level of detail has the disadvantage of making DEM computationally very 
expensive. Naturally, to solve the industrial-scale problems, parallel computing on 
heterogeneous cloud resources is an obvious choice to increase computational 
capabilities. The intentions to reduce memory consumption, improve load balancing 
and better utilize available multicore resources motivated researchers to develop 
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hybrid parallelization of DEM software. Henty [2] implemented a hybrid 
parallelization of the message-passing and shared-memory models for spherical 
particles, but the pure MPI code was always more efficient than a hybrid scheme. The 
LIGGGHTS DEM software [3] employed uses a Cartesian grid of subdomains with a 
recursive multi-sectioning algorithm for global domain decomposition and RCB 
method [4] for defining subsets of particles assigned to threads. Incardona et al. [5] 
demonstrated the scalable framework OpenFPM for shared-memory and distributed-
memory implementations of particle and particle-mesh codes. Yan and Regueiro [6] 
examined the hybrid MPI/OpenMP mapping schemes and influences of 
memory/cache hierarchy for 3D DEM simulations. However, pure MPI 
implementation achieved higher efficiently than hybrid MPI/OpenMP software. In the 
discussed research, only OpenMP was used for shared-memory programming. 

 
GPU has a higher parallel structure, which makes them very efficient for particle-

based computations. A few efforts have been made to use the combined GPU and MPI 
technology [7]. However, the communication overhead among GPUs significantly 
reduces the parallel performance because of the costly data transfer to the CPU 
memory and the MPI communication among different nodes. It is worth noting that 
only CUDA was employed for shared-memory programming on GPU together with 
MPI technology for distributed-memory communications in the case of DEM 
software. Very few attempts to exploit low-cost cloud resources for computationally 
demanding DEM software have been reported in the academic literature [8]. However, 
heterogeneity of cloud resources was not considered. This paper presents the hybrid 
MPI/OpenCL parallelization of DEM software, employing resource-aware 
partitioning for heterogeneous cloud resources. 
 

2  Hybrid parallelization of DEM software 
 
Hybrid parallelization of DEM software is developed to exploit the potential of 
different types of memory and to simplify mapping of subsets of particles to 
heterogeneous multi-core cloud resources. In the present research, the discrete 
element model for granular flows of the non-cohesive frictional visco-elastic spherical 
particles is considered. The dynamic behaviour of a discrete system is described by 
the motion and deformation of the interacting individual particles within the 
framework of Newtonian mechanics. An arbitrary particle undergoes motion 
characterized by three translational and three rotational degrees of freedom. The 
details of the governing equations, implemented model and conventional DEM 
procedures can be found in [9]. 
 

2.1 Implementation of heterogeneous resource-aware partitioning 
 
Partitioning well known as domain decomposition is implemented in the developed 
DEM software as efficient coarse grain parallelization strategy for distributed-
memory architectures. The RCB method [4] from the Zoltan library [10] is used for 
partitioning particles into subsets because it is highly effective for particle 
simulations. Heterogeneous resources, such us containers of highly different 
computing performance, can cause substantial load imbalance of the parallel software. 
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The percentage load imbalance measure λ quantifies the uneven distribution of 
computational load by using the following formula: 
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where Lavg is the averaged load over all processes and Lmax denotes the largest load. 
The time consumed by computational procedures is almost the exact measure of the 
computational load. For resource-aware partitioning, the load is internally monitored 
measuring the computing time by timers implemented in DEM procedures. 

 
 Heterogeneity of resources is specified by different values of weights that result in 
subsets of different size after repartitioning. New weight new

iW  is computed according 
to runtime measured computational load Li of parallel process i:  
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where old

iW  is previous weight of process i. It is worth noting that these weights also 
consider variations of application load and system load on virtualized hardware. Thus, 
the previous weights help reducing significant oscillations that often occurs in 
dynamic simulations. Finally, RCB-based repartitioning adapts subsets of particles to 
heterogeneous resources according to runtime measured load of application-specific 
computations. 
 
 All computations are performed in the time loop. At the beginning of the time step, 
the computational load is measured for resource-aware partitioning. Then, 
repartitioning of particles into subsets is performed if one of two conditions is 
satisfied. Commonly, repartitioning is performed if load imbalance exceeds the 
predefined value. In the present research, more sophisticated approach is developed 
according to specific needs of DEM computations. A small portion of communication 
is required when MPI processes exchange particles as the particles move from one 
subset to another. This communication is optional and should be performed only in 
the case of a nonzero number of exchanging particles. However, information 
exchange is necessary in each time step. Despite its local character, information 
exchange and internode particle data transfer reduce the parallel efficiency of 
computations. Therefore, this particle exchange is performed only during 
repartitioning procedure. Moreover, skinning technique is employed to avoid frequent 
repartitioning. To make contact with particle from another subset, internal particle 
needs time to cross the ghost layer, which can be estimated [11]. Thus, sometimes 
repartitioning should be performed with frequency defined by granular flow physics 
despite low workload imbalance. Therefore, the first condition based on load 
imbalance is supplemented by the second condition based on the frequency defined 
by application physics. The subroutines of Zoltan library perform parallel 
repartitioning for distributed-memory architectures. After repartitioning, migration of 
particles from old partition to a new one should be handled. New ghost layers are 



4 
 

defined as well as ghost particles are registered. At the end of repartitioning code, data 
of internal particles are transferred from the host memory to the OpenCL device 
memory for main shared-memory computations. The main communications, 
exchanging data of ghost particles between neighbouring partitions, are performed 
before the main DEM computations. The main DEM procedures are carried out by 
OpenCL kernels on shared-memory multicore nodes. At the end of the time step, the 
results can be copied from the OpenCL device memory to the host memory and stored 
on the hard disk drive. 
 

2.2 OpenCL kernels 
 
The main computational procedures of DEM are implemented by using OpenCL 
kernels. Main kernels are performed on the thread per particle basis, which takes 
advantage of the massive parallel computation capabilities of modern hardware and 
can be considered to be the most suitable parallelism in the case of DEM 
computations. The parallel algorithm for shared-memory architectures can be outlined 
as follows. Kernel 1 performs the contact search by using the standard uniform grid 
method. The output of the kernel contains the contact list. Kernel 2 handles the contact 
history for friction force computations. The kernel maps the contacts of the previous 
time step to the newly detected contacts of the current time step. Kernel 3 computes 
the contact forces and the moments between all overlapped particles. Kernel 3 can be 
treated as the main kernel because it performs the largest part of computations on a 
thread per particle basis. Kernel 4 is aimed at computing the boundary conditions and 
the external gravitational force. The last Kernel 5 performs the time integration by 
using the explicit velocity Verlet algorithm [11]. 
 

2.3 MPI communication 
 
After repartitioning performed by RCB method, some particles migrate from old 
partition to a new one. Redistribution of particles requires internode communication 
handled by MPI. The RCB method is attractive as a dynamic load balancing algorithm 
because it implicitly produces incremental partitions and limits particle transfer 
among nodes caused by repartitioning. At the end of repartitioning, MPI processes 
exchange information of ghost particles, which is necessary for internode 
communications performed before the main DEM procedures in each time step. 
 
 On shared-memory multi-core node each OpenCL device performs computations 
only on its subset of particles. However, it needs to share information with OpenCL 
devices, working on other nodes, about particles that are near the division boundaries 
in ghost layers. This internode communication is implemented by using MPI 
subroutines. The main portion of communications is performed prior to the main DEM 
computations. Data of ghost particles are exchanged between neighbouring partitions 
by MPI. The exchange of positions and velocities of particles is a common strategy 
often used in DEM codes [3] because it allows nodes independently to perform contact 
search and computation of forces. It is worth noting that data of ghost particles, 
transferred by MPI from other nodes at each time step, also should be copied to the 
OpenCL device memory, which makes internode data exchange very expensive. 
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3  Performance Analysis 
 
A gravity packing problem was solved on heterogeneous containers to measure the 
parallel performance of the DEM software based on the hybrid MPI/OpenCL 
implementation. The gravity packing problem was considered because it was 
commonly employed as a performance benchmark [3], [8]. The solution domain was 
assumed to be a cubic container with the 1.0m-long edges. Granular material, falling 
under the influence of gravity, was presented by an assembly of 1000188 and 4000000 
monosized particles. Half of the container was divided into cubic cells with particles 
embedded into the cell centres. The initial velocities of the particles are defined 
randomly, having their magnitudes over the range of [0.0; 0.1] m/s. 10000 time steps 
equal to 1.0x10-8 s were performed, which resulted in the physical time interval of 
0.0001 s. In the case of the considered benchmark, movement of particles with 
skinning technique required to repartition subsets of particles at each 1000 time steps. 
 

3.1 Cloud resources 
 
The private cloud is built by using OpenStack Train 2019 version [12]. Compute 
service Nova for virtual machines, compute service Zun for containers, image service 
Glance, networking service Neutron, container network plugin Kuryr, block storage 
service Cinder and identity service Keystone are deployed on the OpenStack cloud. 
The parallel DEM software as a service is deployed on top of the provided platforms, 
such as GNU compilers, OpenCL, Open MPI and the Zoltan library.  

  
Cores Architecture RAM, [GB] HDD, [TB] 

CN-6700-4 4 i7-6700 16 0.5 

CN-4790-4 4 i7-4790 16 0.5 

CN-E5-20 20 E5-2630 16 0.5 

CN-GPU 1792 (CUDA) Tesla™ P100 12 0.5 

Table 1: Characteristics of containers. 
 
 The cloud infrastructure is composed of OpenStack service nodes and compute 
nodes connected to 1 Gbps Ethernet LAN. Hardware characteristics of faster compute 
nodes hosting the containers are listed below: Intel®Core i7-6700 3.40 GHz CPU, 32 
GB DDR4 2133 MHz RAM, 34.13 GB/s memory bandwidth, and 1 TB HDD. 
Hardware characteristics of slower nodes are listed below: Intel®Core i7-4790 3.60 
GHz CPU, 32 GB DDR3 1866 MHz RAM, 29.87 GB/s memory bandwidth and 1 TB 
HDD. The NVIDIA® Tesla™ P100 GPU (1792 FP64 CUDA Cores, 12GB HBM2, 
549GB/s memory bandwidth) is installed on the node with following hardware 
characteristics: Intel®Xeon™ E5-2630 2.20GHz 2xCPU, 32GB DDR4 2133MHz 
RAM, 2x34.13 GB/s memory bandwidth and 1 TB HDD. Characteristics of containers 
are provided in Table 1. Docker version 20.10.7 containers managed by Zun are used 
in the cloud infrastructure. Ubuntu 20.04.3 LTS (Focal Fossa) is installed in the 
containers. The container CN-GPU provides access to NVIDIA® Tesla™ P100 GPU. 



6 
 

 

3.2 Parallel performance 
 
The parallel performance analysis is based on the speedup gained relative to a 
sequential run of DEM software on cloud containers CN-6700-4 and CN-4790-4. 
Figure 1 shows the parallel speedup as a function of the number of containers for the 
benchmarks of 1000188 and 4000000 particles. The curve called Ideal illustrates the 
ideal speedup. The curves with abbreviations HOM5, HET2+3 and HET5+3 shows 
the speedup obtained on 5 homogeneous containers CN-6700-4, 2 faster containers 
CN-6700-4 supplemented by 3 slower containers CN-4790-4 and 5 faster containers 
CN-6700-4 supplemented by 3 slower containers CN-4790-4, respectively. The 
abbreviations “1M” and “4M” represent the benchmarks of 1000188 and 4000000 
particles, respectively. 
 

 
Figure 1: Parallel speedup obtained on heterogenous resources. 

 
 The parallel speedup is largely determined by the ratio of local OpenCL 
computations over internode MPI communications. As the number of containers 
increases, for a fixed problem size, the communication cost will eventually become 
dominant over the local computation cost after a certain stage. This high ratio of 
communication to computation makes the influence of a further reduction in the local 
computation on the overall cost of running the application very small. The relative 
communication cost is lower for larger benchmark of 4000000 particles than that for 
smaller benchmark of 1000188 particles, therefore, higher speedup is observed for 
larger benchmark. Speedups equal to 5.2 and 6.0 were measured, solving benchmarks 
of 1000188 and 4000000 particles on 8 heterogeneous containers, respectively. The 
obtained speedup values were close to those attained for relevant numbers of 
homogeneous nodes in other performance studies of DEM software based on the 
hybrid parallelization [3]. It is worth noting that hybrid parallelization eliminated 
issues related to mapping of particle subsets to multicore nodes and improved speedup 
obtained on uneven number of nodes [8]. The replacement of 3 faster containers by 3 
slower ones slightly decreased the speedup measured on 5 containers from 3.94 to 

 



7 
 

3.72 and from 4.34 to 4.02 for benchmarks of 1000188 and 4000000 particles, 
respectively. The observed decrease did no exceed 7.4% of the speedup measured on 
5 homogeneous containers. In the case of smaller benchmarks, execution times 
obtained by using weighted repartitioning were nearly equal to those attained by using 
unweighted repartitioning. In the case of larger benchmark containing 4000000 
particles, execution times of weighted repartitioning were shorter, but the observed 
difference did not exceed 1.7% of the execution time of weighted repartitioning. The 
percentage load imbalance of computations without weighting was low and varied 
from 9.6% to 12.6%. Thus, low heterogeneity of resources indicated by low load 
imbalance percentage limited the gain of weighted repartitioning. 
 

3.3 Heterogeneous resource-aware partitioning 
 
The ability of the developed DEM software to repartition subsets of particles 
according to heterogeneous resources is presented in this subsection. Five containers 
CN-6700-4 were supplemented by two powerful containers CN-E5-20 and CN-GPU 
in the considered benchmark. Figure 2 shows time evolution of the execution time 
(Figure 2a) and load imbalance (Figure 2b). The dashed curves represent results of 
resource-aware partitioning with variable weights, while the solid lines represent that 
of unweighted repartitioning, which leads to partitions of nearly equal size. It can be 
observed that the percentage load imbalance measure of computations with 
unweighted repartitioning approximately equals to 20%, which is higher than in the 
previous case of eight heterogeneous containers. Therefore, the execution time was 
reduced up to 32.6% of the execution time obtained by using unweighted 
repartitioning. Thus, higher heterogeneity of resources indicated by higher load 
imbalance percentage increased the gain of runtime resource-aware partitioning. 
Generally, on one node the employed GPU performs DEM computations significantly 
faster than the CPU [13], therefore, higher load imbalance percentage as well as gain 
in execution time can be expected. Thus, detailed investigation of computational load, 
weights and communication issues is required. 
 
(a) (b) 

  
 

Figure 2: Time evolution of the execution time (a) and load imbalance (b). 
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 Figure 3 presents time evolution of runtime measured computational load and 
weights. Initially, the load of any container CN-6700-4 was approximately 3.5 times 
higher than that of the container CN-GPU equipped by GPU (Figure 3a). The 
difference in computational loads of containers CN-E5-20 and CN-GPU was lower. 
The computational load of container CN-E5-20 was 2.5 times higher than that of the 
container CN-GPU. The differences of computational loads were relatively higher 
than the percentage load imbalance because the formula (1) compares the maximal 
load with the averaged load. The load of any slower container serves as the maximal 
load, while the averaged load is highly influenced by five slower containers CN-6700-
4 and reduced by two powerful containers CN-E5-20 and CN-GPU. After several 
applications of resource-aware partitioning, all curves of computational load 
approached the average. Some variation of CN-GPU load around the average can be 
observed because of communication issues. 
 
(a) (b) 

  
 

Figure 3: Time evolution of the computational load (a) and weights (b). 
 
 
 In Figure 3b, time evolution of weights shows that more than 11.5 times lower 
weights were computed for partitions of the containers CN-6700-4 than those for 
partitions of the container CN-GPU. Weights for the container CN-E5-20 were higher 
than those for the container CN-6700-4, but the difference was not large, comparing 
to the container CN-GPU equipped by GPU. The memory bandwidth bound DEM 
computations did not allow exploiting computing power of 20 physical cores because 
of comparatively low memory bandwidth of the CN-E5-20. 
 
 Figure 4 shows time evolution of communication time (Figure 4a) and wait time 
(Figure 4b). At the beginning of simulation interval, the rise of communication time 
of the container CN-GPU was caused by the increased number of ghost particles. 
Communication time of the container CN-GPU remained the largest during the whole 
simulation time interval because of the same reason. Communication time of the other 
containers chaotically oscillated due to regular application of repartitioning and 
resulting irregular subsets of particles. At the beginning of simulation interval, the 
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fastest container CN-GPU quickly completed its computations and waited for the data 
of neighbouring partitions. The runtime resource-aware partitioning increased the 
computational load of the container, which gradually decreased its wait time (Figure 
4b). At the beginning of simulation interval, wait time of the container CN-E5-20 was 
also longer than that of the containers CN-6700-4, but the difference vanished after 
two applications of repartitioning. At the end of simulation interval, the container CN-
GPU had so much data of ghost particles to send that other containers should wait for 
data of neighbouring subsets even longer than CN-GPU. The RCB method does not 
directly optimize internode communication, therefore, communication issues can 
influence the load balance and overall performance of parallel software. 
 
(a) (b) 

  
 

Figure 4: Time evolution of communication time (a) and wait time (b). 
 
4  Conclusions 
 
In the present paper, the hybrid parallelization of DEM software developed by using 
OpenCL for shared-memory architectures and MPI based resource-aware partitioning 
for distributed-memory heterogeneous resources of the OpenStack cloud. The hybrid 
parallelization eliminated issues related to mapping of particle subsets to multicore 
nodes, especially, improving speedup on uneven number of containers. Sufficient 
speedups equal to 5.2 and 6.0 were measured on 8 heterogeneous containers in the 
case of 1000188 and 4000000 particles, respectively. The replacement of 3 faster 
containers by 3 slower ones slightly decreased the speedup up to 7.4% of the speedup 
measured on 5 homogeneous containers. The developed resource-aware repartitioning 
handled heterogeneous cloud containers, supplemented with GPU, reducing the 
execution time up to 32.6% of the execution time obtained by using unweighted 
repartitioning. 
 
 
 



10 
 

References 
 
[1] P.A. Cundall, O.D.L Strack, “A Discrete Numerical Model for Granular 

Assemblies”, Géotechnique, 29, 47–65, 1979. doi:10.1680/geot.1979.29.1.47. 
[2] D. S. Henty, "Performance of Hybrid Message-Passing and Shared-Memory 

Parallelism for Discrete Element Modeling," in “SC '00: Proceedings of the 
2000 ACM/IEEE Conference on Supercomputing”, Dallas, TX, USA, Paper 10, 
2000. doi:10.1109/SC.2000.10005. 

[3] R.Berger, C. Kloss, A. Kohlmeyer, S. Pirker, “Hybrid Parallelization of the 
LIGGGHTS Open-Source DEM Code”, Powder Technol, 278, 234–247, 2015. 
doi:10.1016/j.powtec.2015.03.019. 

[4] M. Berger, S. Bokhari, “A Partitioning Strategy for Nonuniform Problems on 
Multiprocessors”, IEEE Trans. Comput, C-36, 570–580, 1987. 
doi:10.1109/tc.1987.1676942. 

[5] P. Incardona, A. Leo, Y. Zaluzhnyi, R. Ramaswamy, I.F. Sbalzarini, 
“OpenFPM: A Scalable Open Framework for Particle and Particle-Mesh Codes 
on Parallel Computers”, Comput. Phys. Commun, 241, 155–177, 2019. 
doi:10.1016/j.cpc.2019.03.007. 

[6] B. Yan, R.A. Regueiro, “Comparison between Pure MPI and Hybrid MPI-
OpenMP Parallelism for Discrete Element Method (DEM) of Ellipsoidal and 
Poly-Ellipsoidal Particles”, Comput. Part. Mech, 6, 271–295, 2018. 
doi:10.1007/s40571-018-0213-8. 

[7] J. Gan, T. Evans, A. Yu, “Application of GPU-DEM Simulation on Large-Scale 
Granular Handling and Processing in Ironmaking Related Industries”, Powder. 
Technol, 361, 258–273, 2020. doi:10.1016/j.powtec.2019.08.043. 

[8] O. Bystrov, R. Pacevič, A. Kačeniauskas, “Performance of Communication- 
and Computation-Intensive SaaS on the OpenStack Cloud”, Appl. Sci, 11, 7379, 
2021. doi:10.3390/app11167379. 

[9] A. Kačeniauskas, R. Kačianauskas, A. Maknickas, D. Markauskas, 
“Computation and Visualization of Discrete Particle Systems on gLite-Based 
Grid”, Adv. Eng. Softw, 42, 237–246, 2011. 
doi:10.1016/j.advengsoft.2011.02.007. 

[10] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, C. Vaughan, “Zoltan Data 
Management Services for Parallel Dynamic Applications”. Comput. Sci. Eng, 
4, 90–96, 2002. doi:10.1109/5992.988653. 

[11] H.R. Norouzi, R. Zarghami, R. Sotudeh-Gharebagh, N. Mostoufi, “Coupled 
CFD-DEM Modeling: Formulation, Implementation and Application to 
Multiphase Flows”, Wiley, Chichester, West Sussex, United Kingdom, 2016. 
doi:10.1002/9781119005315. 

[12] OpenStack. Available online: https://www.openstack.org/ (accessed on 29 
April 2023). 

[13] R. Pacevič, A. Kačeniauskas, “The Performance Analysis of the Thermal 
Discrete Element Method Computations on the GPU”, Comput. Inform, 41, 
931–956, 2022. doi:10.31577/cai_2022_4_931. 




