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Abstract

Mesh deformation methods [7] have been widely used for the past decades in various
fields such as fluid-structure interaction, aerodynamic shape optimization, unsteady
and aeroelastic computational fluid dynamics. Such methods are particularly inter-
esting in order to update meshes during a simulation without the need to perform an
(often expensive) full regeneration of the mesh, e.g. when facing moving boundaries
or geometry update during a structural optimization loop.

Among the numerous existing methods, radial basis functions interpolation (RBF) [1]
is particularly suitable for unstructured mesh applications due to its simplicity and the
high quality of the resulting mesh. One key aspect of RBF-based mesh deformation is
the resolution of a dense linear system, which tends to be computationally expensive
and high memory demanding when dealing with large-scale meshes [2, 3], thus being
a major drawback of the method. This could be mitigated using an iterative solver
instead of a direct one during the resolution step, thus saving the memory needed to
store the factorization. However, some radial basis functions lead to ill-conditioned
systems, requiring the use of an efficient preconditioner which tends to complexify
the problem.
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In this work, we aim to speed-up the resolution of this linear system using alterna-
tive randomization techniques coming from probabilistic linear algebra to solve the as-
sociated dense linear system. Indeed, such methods have been studied for two decades
and are being increasingly popular in various fields, including numerical linear alge-
bra and optimization [4]. Their key aspect is to reduce the complexity of solving large
scale linear systems by exploiting the spectral properties of the underlying operator.

In this study, we propose an alternative approach for dealing with the input matrix
by generating an approximate ”sketch” of the initial problem. This sketch is easier
to solve compared to working with the original matrix directly, albeit at the expense
of reduced precision. Our focus lies specifically on matrices arising from RBF-based
mesh deformation procedures, which typically exhibit a rapid spectral decay and tend
to be numerically low rank. Leveraging these characteristics, we explore the potential
of probabilistic linear algebra techniques in this domain.

To embed the rows of the linear system into a lower-dimensional space while pre-
serving their geometric properties, we employ a dimension reduction map. By doing
so, we maintain the underlying geometry of the original space, thereby ensuring that
the approximated sketch exhibits similar behavior in terms of singular values and sin-
gular vectors as the original matrix. Our chosen method for constructing this map
involves utilizing highly structured random matrices, commonly referred to as ran-
domized linear embeddings or random projections. Subsequently, we confine the ma-
trix to the approximated subspace and compute a standard factorization of the reduced
matrix.

The proposed approach will be discussed on the basis of 2D and 3D applications.
Keywords: mesh deformation, RBF, randomized linear algebra, subspace embed-
dings, low rank approximation, large scale systems

1 Introduction

In this paper, our primary objective is to significantly enhance the efficiency of solving
the linear system involved in RBF-based mesh deformation approaches. We achieve
this by employing alternative randomization techniques from probabilistic linear alge-
bra, which have shown great promise in the context of RBF-based mesh deformation
procedures. This is particularly relevant because a significant number of matrices
encountered in such applications exhibit rapid spectral decay and tend to have low
numerical rank.

To address this challenge, we propose a novel method that involves embedding the
rows of the linear system into a lower-dimensional space using a dimension reduc-
tion map, while ensuring the preservation of their geometric properties. By preserving
the initial space’s geometry, we can demonstrate that the approximated ”sketch” ex-
hibits similar behavior in terms of singular values and singular vectors compared to
the original matrix.

This paper is organised as follow. Section 2 shortly recalls the basis of mesh de-
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formation based on RBF and derive the associated (dense) linear system. Section 3
introduce the application of randomized linear algebra on the previously obtained sys-
tem, focusing on the randomized singular value decomposition (RSVD) algorithm.
Section 4 investigates the performance of the proposed method on the basis of a mesh
moving application. Finally, Section 5 concludes this paper.

2 Mesh deformation based on Radial Basis Functions

Let’s consider a mesh Ωh with an interface Γc
h containing nc nodes subjected to a given

displacement dc. In the following, we denote by x the coordinates of any (internal)
node of the mesh, and by (xj

c)j the coordinates of the interface control nodes subjected
to the given displacement. The main principle of RBF-based mesh deformation is to
infer the displacement of any internal nodes x given the known displacement of the
control nodes on the interface Γc

h by means of the following interpolation function s:

s(x) =
nc∑
j=1

αjϕ(||x− xj
c||) + p(x), (1)

where ϕ denotes a radial basis function to be chosen, (αj)j the associated weights
and p a polynomial of degree depending on the choice of ϕ. The weights αj and the
polynomial p are computed such that the function s returns the exact displacement at
control points:

s(xj
c) = djc, 1 ≤ j ≤ nc, (2)

under the additional constraint:
nc∑
j=1

αjq(x
j
c) = 0, (3)

for all polynomials q with a degree less or equal to the degree of p.
A common choice, which holds in the following, is to choose s to be conditionally

positive definite of order m ≤ 2 together with a linear polynomial p. Examples of
such a function s is given in Table (1).

Name s(x)
CP C0 (1− x)2

CP C2 (1− x)4(4x+ 1)

Gaussian 10−x2

Table 1: Examples of classical radial basis functions.

Finally, Equations (2) and (3) lead to the following linear system of unknowns αi:

Ax = b, with A =

[
M P
P T 0

]
, x =

[
α
β

]
, b =

[
dc
0

]
, (4)
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where M ∈ Rnc×nc is the interpolation matrix of coefficients Mi,j = ϕ(||xi
c − xj

c||)
and P ∈ Rnc×4 is given by Pj,: = [1, xi

c, y
i
c, z

i
c].

3 Application of randomized linear algebra to RBF lin-
ear system

As stated before, applying both direct or iterative methods coming from determinis-
tic linear algebra to the linear system (4) tends to be computationally expensive and
memory demanding on large scale configurations. In this section, we presents the ap-
plication of one of the classical randomized linear algebra algorithms to the previous
linear system.

Instead of working with the input matrix directly, one of the basic ideas of random-
ized linear algebra is to work with a ”sketch” that approximates the initial problem. As
the majority of RBF matrices exhibit a rapid spectral decay and tend to be numerically
low rank, it is possible to embed the rows of the linear system into a lower-dimensional
space using a dimension reduction map while conserving their geometrical properties.
By preserving the geometry of the initial space, we can prove that the approximated
”sketch” has similar behavior in terms of singular values and singular vectors com-
pared to the original matrix.

The proposed method in conducted in two steps. First, we use highly structured
random matrices to build such map which will be referred to as randomized linear
embeddings, also known as random projection. Then, we restrict the matrix to the
approximated subspace and compute a standard factorization of the reduced matrix.

More specifically, we start by randomly projecting the nc×nc RBF matrix A using
the randomized map to form the matrix Y = AΩ, where Ω∗ is a mixing random
embedding such that the columns (yi)i∈[1,l] of the matrix Y form a random sampling
from the range of A, where l ≪ nc.

For the selection of a random embedding matrix, it is recommended by the au-
thors [4] to use a Gaussian random matrix. In this approach, each entry of the ma-
trix is sampled from a Gaussian distribution. Another viable method that can be
employed is the Subsampled Randomized Hadamard Transform (SRHT), denoted as
Ω =

√
nc

l
DHR. This transformation encompasses the following components:

• H: The Walsh Hadamard matrix with dimensions nc × nc, which is determinis-
tically defined.

• D: A diagonal nc × nc matrix with entries independently and uniformly dis-
tributed over 1,+1.

• R: A nc × l matrix obtained by randomly selecting l columns from the nc × nc

identity matrix.
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The SRHT presents the advantage of requiring only O(nlog(n)) storage space and
O(klog(n)) operations to be applied to a vector. This efficiency is achieved through
the utilization of a fast subsampled trigonometric transform algorithm.

Due to the randomness, the columns of the test matrix Ω are likely to be linearly
independent and no linear combination falls in the null space of A . This means that
the columns of Y are also linearly independent and span a subspace of the range of
A. Next, a QR factorization may be applied to Y in order to produce an orthonormal
basis Q. However, as the columns of Y tend to be strongly aligned in practice (almost
linearly dependent), it is recommended [4] to use a numerically stable orthogonaliza-
tion procedure [6] as Householder reflectors, double Gram-Schmidt, rank-revealing
QR or TSQR algorithm. Finally, we restrict the input matrix A to the approximated
subspace in order to obtain a reduced l× nc matrix B and use a standard factorization
method such as the singular value decomposition (SVD) on this last matrix. Algo-
rithm 1 shows the different steps to compute the randomized approximation to the
SVD factors.

Algorithm 1: Randomized singular value decomposition (RSVD) [4]
Input: A ∈ Rnc×nc , k a factorization rank and p an oversampling parameter
Output: U ∈ Rnc×k, V ∈ Rnc×k orthonormal matrices and Σ ∈ Rk×k a

diagonal matrix
such that A ≈ UΣV T

1 Draw a random nc × (k + p) test matrix Ω;
2 Y = AΩ ;
3 Y = QR ; // QR Factorization
4 B = QTA ;
5 [Û ,Σ, V ] = svd econ(B) ;
6 U = QÛ ;

For a given target rank k, in order to improve the quality of the corresponding
approximation, it is advised to add an oversampling parameter p ≥ 2 such that l =
k + p ≤ nc. Then, for Ω ∈ Rnc×(k+p) a standard normal test matrix, the expectation
of the error of the randomized SVD satisfies the following inequality [5]:

E(||A− UΣV T ||) ≤ (1 + 4

√
nc(k + p)

p− 1
)σk+1 (5)

Consequently, the random projection procedure computes a (k + p)-dimensional sub-
space that captures as much of the action of a matrix A as the best k-dimensional
subspace to a small polynomial term, hence the reason behind the oversampling oper-
ation (p = 5 or p = 10). Due to the numerical low rank nature of the RBF matrices,
we are expecting to have an accurate approximation even for moderate values of k.

With Tmult the cost of a matrix-vector multiplication, the number of flops Tbasic

required by Algorithm 1 satisfies:

Tbasic = (k + p)Tmult +O(nck
2), (6)
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which mean that this algorithm can benefit from matrices with a fast matrix-vector
product (structured, sparse, ...).

Finally, once obtaining the approximated factors, we use them to get an approxi-
mated solution to the linear system (4) coming from the RBF method.

4 Numerical assessments

In order to evaluate the performance of randomized mesh deformation approach based
on Equation and Algorithm 1, we consider a test case constituted by a NACA-0012
airfoil geometry (Figure 1 - a) subjected to a 45-degree angular rotation around its
center. The mesh deformation is performed in 10 steps between the initial mesh,
located at the center of the domain, and the final configuration. A Winland (CP C2)
RBF function is used for the interpolation together with several random projectors and
compression ratio values.

We evaluate the performance of the approach in terms of resulting mesh quality
and approximation error with respect to an reference deterministic direct factorization
method on the matrix A. The numerical experiment are computed using Python pro-
gramming language with standard scientific computing libraries such as NumPy and
SciPy.

In order to evaluate the quality of the deformed mesh, we propose to use the fol-
lowing indicator on each element E:

Q(E) = C0
VE

hd
, with h =

(
2

d(d+ 1)

∑
i<j

||∂Ei − ∂Ej||2
) 1

2

, (7)

where d is the space dimension, VE the volume of the element E, (∂Ei)i the edges
of element E, h the average of lengths of edges and C0 is chosen such that the qual-
ity measurement of an equilateral element is equal to 1. As for the accuracy of the
approximated solution of the linear system, we use the relative residual error e with
respect to the spectral norm:

e(x) =
||Ax− b||

||b||
. (8)

Finally, we also estimate the expected error and its standard deviation over 50 trials in
order to evaluate the reproducibility of the randomized solution.

Figure (1 - b) represents the final mesh using an exact solver, Figure (1 - c) (respec-
tively (1 - d)) represents the deformed mesh for the same number of steps but using a
randomized direct solver with Gaussian (respectively Hadamard) random projectors,
while keeping only 10% of the RBF matrix columns (which corresponds to l = 0.1nc).
The randomized mesh deformation approach had a similar behavior in terms of mesh
quality distribution to the exact solver with an expected relative error up to 10−2 as
shown by the Figure (2).
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(a) (b)

(c) (d)

Figure 1: NACA-0012 airfoil geometry : (a) initial mesh, (b) deformed mesh with ex-
act solver, (c) deformed mesh with randomized solver using Gaussian pro-
jector, (d) deformed mesh with randomized solver using Hadamard projec-
tor.

By decreasing the compression ratio, we were able to improve the accuracy of the
randomized solver with an estimated error up to 10−4 as shown in Table (2), but no
significant improvement was noticed in terms of mesh quality distribution.

Sample size %
mean std

x y x y
0.1 2.72 10−2 2.54 10−2 2.72 10−5 2.69 10−5

0.3 1.82 10−3 1.68 10−3 6.08 10−8 5.41 10−8

0.5 4.74 10−4 4.45 10−4 2.73 10−9 2.31 10−9

Table 2: Relative residual for different sample size

5 Conclusion

This work presents an application of randomized linear algebra algorithms in order to
improve the efficiency of RBF-based mesh deformation procedures. By exploiting the
specificity of the spectral properties of RBF matrices, these randomized approaches
allows to drastically reduce the computational complexity associated with the RBF
linear system, while preserving sufficient accuracy for this class of problems. Indeed,
the numerical experiments conducted using two different flavors of randomized SVD
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Figure 2: Comparison between the mesh quality distribution Q of the deterministic
and randomized approaches while keeping only 10% of the RBF matrix
columns.

algorithm exhibit good quality of the resulting deformed meshes in comparison with
a deterministic solver, even with high compression ratios on the RBF operator.

Current works focus on other types of random solvers, including adaptive variants,
for a wider range of applications.
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