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Abstract 
 

This paper presents the enhancement of a previously developed linear quadrilateral 
plate element by using incomplete quadratic functions. As in the free formulation 
concept, the couple bending energy between lower (linear) and higher (quadratic) 
modes is forced to be zero in order to satisfy the constant bending patch test. The 
discrete shear projection method (DSPM) is used to define the independent transverse 
shear strains and avoid the shear locking phenomenon. The improved quadrilateral 
element has four nodes and 3 degrees of freedom (DOFs) per node. It is free of shear 
locking, has a proper rank, and passes the bending moment patch tests. The application 
in static analysis exhibits excellent convergence behaviour, reliability, and precision. 
 

Keywords: Reissner-Mindlin, plate, quadrilateral element, discrete shear projection, 
free formulation, linear analysis, patch-test, shear locking. 
 

1 Introduction 
 

When using a four-node quadrilateral finite element with a total of 12 DOFs, it is 
crucial to have a reliable element for a wide range of slenderness ratios (such as 104 
  L/h  4). Among the characteristics that must be possessed are not showing shear 
locking and passing the constant bending moment patch tests. As a response to the 
issue, a selective numerical integration with special schemes for shear strains 
proposed by MacNeal (1982) [1] has been highly suggested in preventing shear 
locking. But this technique works only for rectangular elements and not for 
quadrilateral elements. 
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Starting with Reissner-Mindlin (RM) plate theory, in 1982, Batoz and Ben Tahar 
devised a quadrilateral element named Discrete Kirchhoff Quadrilateral (DKQ) [2] 
using discrete side constraints to disregard transverse shear energy. This 12 DOF 
element has four corner nodes, each with 3 DOFs. Due to its nature, the element only 
applies to thin plates.  

 

Using a modified RM plate theory and C1 continuity, Bergan and Wang 1984 [3] 
develop a quadrilateral element based on the energy-orthogonal free formulation 
approach. The transverse displacement w is the only independent variable, the 
curvatures {} is expressed as the second and fourth derivatives of w, and the 
transverse shear strains {} is expressed as the third derivative of w. The convergence 
behaviour of this element is excellent for thin to moderately thick plates. For a very 
thick plate, the accuracy of this element is slightly decreased.  

 

Dvorkin and Bathe (1984) [4] and Bathe and Dvorkin (1985) [5] introduced the 
Mixed Interpolation of Tensorial Components (MITC4) element, a simple 
formulation with 12 DOFs which takes into account transverse shear effects. 

 

Katili (1993) [6] introduced the Discrete Kirchhoff Mindlin Quadrilateral (DKMQ) 
element as an improvement of the DKQ element. It uses discrete constraints to account 
for transverse shear effects and normal tangential incomplete equilibrium equations 
along the sides of the element to get constant transverse shear strains. The DKMQ is 
suitable for plates with thicknesses ranging from thin to thick, free of shear locking, 
possesses excellent convergence properties, and passes patch tests. 

 

Ko et al. (2016, 2017a, 2017b) [7-9] improved MITC4 to MITC4+ plate and shell 
element, which shows excellent performance on selected shell benchmark tests.   

 

Katili et al. (2021) and (2023) [10-11] recently presented a simple quadrilateral 
element referred to as Q4s based on the DSPM (discrete shear projection method) for 
functionally graded materials (FGM) plates. 

 

This paper aims to improve the Q4s [10-11] element using incomplete quadratic 
functions for rotations and the free formulation method of Bergan and Wang [3]. The 
new quadrilateral plate element called Q4γs+ is the paper's primary contribution. It 
has four nodes and three DOFs per node (transverse displacement w and two rotations, 
i.e. x in the z-x plane and y in the z-y plane).  

 
 

2 Formulation of Q4γs+ element 
 

2.1 Displacement functions 
 

The transverse displacement w is expressed using bilinear shape functions as in 
Equation (1). Meanwhile, the rotations βx and βy at four corner nodes (Figure 1) are 
interpolated with a bilinear shape functions Ni (i = 1,2,3,4) as in Equation (2). The 
four temporary DOFs of ks  (k = 5,6,7,8) at all sides are interpolated using 
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incomplete quadratic functions to enhance Q4s. The displacement w, rotation 
function βx, and rotation function βy of the Q4γs+ element can be written as: 

4

1
i i

i

w N w


   (1)
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       (2)

The bilinear shape functions Ni as the lower order shape functions as in Equation 
(3) and the incomplete quadratic functions Pk as the higher order shape functions are 
given by Equation (4).  
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Figure 1: Q4γs+ element with 3 DOFs at corner nodes and four temporary DOFs at 
mid-sides. 

  

2.2 Curvatures and bending energy 
 

By using Equation (2), the bending strain matrix will comprise two parts, i.e., lower 
and higher order. 
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5 6 7 8n s s s s       

where the lower order of the bending strain matrix is 
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and the higher order of the bending strain matrix is 
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 (7)

with j11, j12, j21, and j22 are the terms of the Jacobian matrix inverse. Ck and Sk are the 
directional cosines of side k (Figure 2).  
 

Figure 2: The side k direction cosines.  
 

The bending energy of Q4γs+ can be represented as follows: 

  int
1

 
2

b
b

A
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 (8)

 bH  is the bending rigidity matrix, E is the modulus elasticity, h is the plate 

thickness, and  is the Poison ratio. 
 

We assumed the zero coupling bending energy to fulfil the constant bending patch 
test [3]. By introducing Equation (5-7) into Equation (8), the bending energy in 
Equation (8) can be rewritten as follows: 

 

   int
1 1

2 2u

b
n b n n b nu k u k


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where the lower order and higher bending stiffness are 
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 T
b b b b
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  

            

2.3 Discrete shear projection method  
 

 
Figure 3: Shear strains at node i and constant shear strains on four sides of the 

element.

The transverse shear strain in the tangential s-direction can be expressed as: 

1 4 1
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 (11)

Assuming that the shear strains on the side are constant, we have the following: 

0

1
γ γ  

k

kk

L

ss
k

ds
L

   (12)

Substituting Equation (11) into Equation (12) and with Figure 2, we obtain: 
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Using constitutive and incomplete equilibrium equations in local normal-tangential 
(n-s) coordinates on each side k (i-j), in [6], Katili proposed the independent transverse 
shear strain as follows: 

2
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where κ is the shear correction factor. 
 

Substituting Equation (14) into Equation (13) and applying it to the four sides of 
an element gives 

     βn u nA u    (15) 
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Applying Equation (14) to the four sides of an element yields 
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The relationship between the constant shear strains on the four sides and the 
temporary DOFs in Equation (18) can be rewritten in the compact form as follows: 
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Substituting Equation (15) into Equation (19), we have: 
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(21)

The shear strains at node i are calculated by projecting the constant shear strains 
on the two sides sharing node i. From Figure 3, the shear strains at node i are 
determined as follows [10-11]: 
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Ck, Sk, Cm, and Sm are the directional cosines of sides k and m (Figure 3) that share 
the same corner node i.  

The independent shear strains x y   are associated with shear strains on four 

nodes as follows (Figure 3):  
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 By substituting Equation (22) into Equation (23), the independent shear strains can 
be expressed in the following form: 
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(25)

Substituting Equation (20) into Equation (24) leads to 
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2.4 Bending and shear stiffness  
 

Substituting Equation (15) into Equation (9), we obtain 
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where the bending stiffness matrix is 
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The shear strain energy can be calculated using the following: 
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  int
1

γ γ  
2

s
sA

H dA    (29)

where  sH  is the transverse shear rigidity matrix as follows: 
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0 1 2 1 υs s s

E
H D D Gh G

 
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Substituting Equation (26) into Equation (29), we have the shear energy as follows: 

  int
1

2
s

n s nu k u   (31)

where the shear stiffness matrix is 

      T
s s s sA

k B H B dA   
(32)

Finally, the total stiffness is:  

     b sk k k   (33)

 

3 Results of Razzaque's skew plate 
 

This skew plate of 60o (Figure 4) subjected to a uniformly distributed load fz = 1 was 
originally evaluated by Razzaque (1973). This structure has hard simply supported on 
AB and CD and free on AD and BC. Each side of this plate has a length of L = 1000. 
In this paper, the Razzaque's plate was analyzed with different meshes N×N with N = 
4, 8, 16, 24, 32, 48, and 64.  

The solution of Razzaque’s skew plate (E = 1085,  = 0.31) is [12]: 
Central displacement : wc = 7.94510-3 fz L4/Db     
Central moment   : My = 95.8910-3 fz L2    

 
Figure 4: Razzaque 60o skew plate with 4×4 mesh. 

Figure 5 shows the non-dimensional central displacements wc and moments My 
of the Razzaque's plate [12] for L/h = 1000 and L/h = 5. For L/h = 5, we use the DKMQ 
[6] element with 64×64 mesh as a reference. We can observe that the Q4γs+ converges 
faster than Q4s [10-11]. 
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Figure 5: Convergence rate of Razzaque's plate (L/h =1000).  

4 Conclusions and Contributions 
 

The new Q4γs+ element has been developed using the discrete shear projection 
method to prevent the occurrence of shear-locking. In the Q4γs+ formulation, the 
bilinear shape functions of rotation x in the z-x plane and y in the z-y plane are 
enriched with incomplete quadratic functions. As in the free formulation concept, the 
coupling bending energy between lower and higher bending energy is assumed to be 
zero, which makes the element pass the constant bending patch test. The results 
indicate that Q4γs+ is simple, efficient, has the correct rank, and is applicable for thin 
to thick plates.  
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