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Abstract 
 

The dynamic stiffness matrix of a cracked Timoshenko-Ehrenfest beam is developed 
to investigate its free vibration characteristics. The cracked beam is modelled by 
connecting two intact Timoshenko-Ehrenfest beam elements and an infinitesimal 
small length cracked element. For the cracked element, the flexibility matrix and 
subsequent stiffness matrix are established by applying fracture mechanics. The 
governing differential equations of motion and natural boundary conditions are 
obtained by applying Hamilton’s principle. For harmonic oscillation the equations are 
solved for displacements and bending rotation. The shear force and bending moment 
are obtained from the natural boundary conditions. The dynamic stiffness matrix of 
the intact beam is then derived by relating the amplitudes of loads to those of the 
displacements. Next, the compliance properties of the crack element are derived using 
facture mechanics theory. The dynamic stiffness matrices of the three components, 
namely the two intact elements and one crack element, are assembled to form the 
overall dynamic stiffness matrix for the cracked beam. The formulation leads to a non-
linear eigenvalue problem. The natural frequencies and mode shapes are extracted by 
applying the Wittrick-Williams algorithm. Results for the cantilever boundary 
conditions of the cracked beam are presented for illustrative purposes, and the effects 
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of crack location and crack depth on the natural frequencies and mode shapes are 
examined. Some results are compared with published literature to confirm the validity 
and accuracy of the proposed method. The theory developed can be extended to 
include frameworks and other structures. 

Keywords: cracked beam, dynamic stiffness method, Wittrick-Williams algorithm, 
Timoshenko-Ehrenfest beam 
 
 
 

1  Introduction 
 

The free vibration analysis of cracked beams has been predominantly investigated 
using the finite element method as evident from the literature, see, for example [1-2]. 
However, it is well recognised that the dynamic stiffness method (DSM) [3] provides 
exact results and therefore, it has much better model accuracy than the finite element 
and other approximate methods. The main reason for the striking difference is that the 
shape function used in the DSM is exact unlike the finite element and other 
approximate methods in which it is generally assumed as a polynomial or 
interpolation function.  
 

In the current investigation, the free vibration characteristics of cracked beams is 
analysed by using the DSM and the Timoshenko-Ehrenfest beam theory which 
accounts for the effects of shear deformation and rotary inertia providing particularly 
useful and accurate results when the slenderness ratio of the beam is small. First the 
governing differential equations of motion are developed for the two intact uniform 
beams which are modelled by using the Timoshenko-Ehrenfest beam theory. The 
governing differential equations of motion and natural boundary conditions are 
obtained by applying Hamilton’s principle. The next step is to solve the equations for 
axial and flexural displacements as well as for bending rotation when the oscillatory 
motion is harmonic. The expressions for shear force and bending moment obtained 
from the natural boundary conditions as resulted from the Hamiltonian formulation 
are utilised. The procedure for generating the governing differential equations of 
motion and natural boundary conditions of the beam achieved from the application of 
symbolic computation [4]. The dynamic stiffness matrix of the intact beam is derived 
by relating the amplitudes of loads to those of the responses at the two ends of the 
beam. This is followed by deriving the compliance properties of the cracked element 
using facture mechanics theory. Then the overall dynamic stiffness matrix is 
assembled by connecting the two intact beam elements with the cracked element. 
Once the dynamic stiffness matrix of the cracked beam is derived, the Wittrick-
Williams algorithm [5] is applied as solution technique to obtain its natural 
frequencies and mode shapes. The results are analysed for various boundary 
conditions, crack length and crack location. For illustrative purpose, the results for the 
case of cantilever boundary conditions are presented and discussed in the paper. 
Finally, the principal findings are summarised.  
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2  Methods 
 

Figure 1 shows a Timoshenko-Ehrenfest beam of width B, thickness h, and length L. 
The axial, bending and shear rigidities of the beam are EA, EI, and kAG with the 
second moment of area I and the Young’s modulus E. The mass per unit length, 
density of material, cross-section area of the beam are m, ρ and A, respectively. The 
beam is modelled by two intact elements (I and II) of lengths L1 and L2 connected by 
a cracked element (III) of crack depth a at the distance L1 from the origin. The beam 
is deflected in the XY plane undergoing axial displacement, bending displacement 
and bending rotation.  
 
 

 
 
Figure 1: Coordinate system and notation for a cracked beam 
 
 

i) Intact Beam Modelling 
 

The kinetic and potential energies of the two intact beam elements are obtained using 
the Timoshenko-Ehrenfest beam theory [6]. Applying Hamilton’s principle, the 
governing differential equations of motions in free vibration are obtained together 
with the expressions for axial force, shear force and bending moment [4]. Introducing 
a non-dimensional length and assuming harmonic oscillation, the governing 
differential equations of motion are derived and solved in terms of two sets of 
constants which are related to each other. Figures 2 and 3 show the sign convention 
for axial force, shear force and bending moment, the boundary conditions for 
displacements and forces respectively. 
 
 
 
 
 
 
 
Figure 2: Sign convention for positive axial force P, shear force S and bending 
moment M. 
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Figure 3: Boundary conditions for displacements and forces. 
 
 
 
The dynamic stiffness matrix K (6×6) is obtained as follows 
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ii) Cracked Element Modelling 
 

The best fitted formulas for explicit flexibility matrix C (3×3) of a cracked element 
in terms of the cross-sectional dimensions and the crack depth through the thickness 
are taken from [2]. The dynamic stiffness matrix KIII (6×6) representing the force 
displacement relationship at the both ends is constructed: 
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iii) The Whole Cracked Beam System 
 
The overall dynamic stiffness matrix K() is assembled using KI, KI and KIII as:  
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The Wittrick-Williams algorithm is used as a solution technique in solving the 
transcendental eigenvalue problem as in the present case. Boundary conditions are 
applied by deleting the rows and columns of K() corresponding to zero 
displacements and rotations when computing the natural frequencies and mode shapes 
of individual cases such as cantilever, simply-supported and clamped-clamped 
cracked beams. A non-uniform cracked beam can be analysed for its free vibration 
characteristics by assembling many uniform cracked beams.  
 
3  Results 
 
Numerical results of a cracked Timoshenko beam are obtained for different boundary 
conditions. The data are taken from [1]: E=216GPa, =7850kgm-3, =0.28, L=0.2m, 
B=0.025m, h=0.0078m. For illustrative purposes, the results are presented for the 
cantilever boundary conditions. The natural frequencies and mode shapes are obtained 
with respect to different crack location, crack depth. A few selected results are 
presented here.  
 

Excellent agreement with published results as shown in Table 1 can be observed. 
The fundamental natural frequency ratio which is the ratio of natural frequencies of 
the cracked and intact beam, are plotted in Figure 4. The natural frequencies of the 
cracked beam are lower than the corresponding intact ones, as expected. The 
difference naturally increases with the crack depth. It is clear when a crack nearer to 
the built-in end has a much greater effect than the one located nearer to the free end 
because the maximum bending moment occurs at the built-in end and the bending 
moment gradually reduces towards the tip and finally becomes exactly zero at the tip. 
The natural frequencies are almost unchanged when the crack is far away from the 
fixed end. Figure 5 shows the fundamental natural frequency ratio against the crack 
depth ratio for two representative crack location ratios.  
 

4  Conclusions and Contributions 
 
 

The free vibration characteristics of a cracked Timoshenko-Ehrenfest beam has been 
investigated using the dynamic stiffness method. The cracked beam is idealised by 
two intact Timoshenko-Ehrenfest beam elements and a cracked element. The dynamic 
stiffness matrix is formulated through an assembly procedure combining cracked and 
intact elements. The formulation resulted in a nonlinear eigenvalue problem which 
was solved by applying the Wittrick-Williams algorithm. Numerical results are 
presented for cantilever boundary conditions to serve as an illustrative example. The 
effects of crack location and crack depth on the free vibration behaviour are discussed 
and representative mode shapes are presented. The accuracy of results using the 
dynamic stiffness method is an important attribute to this research. The results 
provided benchmark solutions so that the finite element and other approximate 
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methods can be calibrated. The research carried out in this paper, is expected to pave 
the way for further research on complex structural systems containing crack elements. 
 
 

 
Figure 4: Fundamental natural frequency ratio against the crack locations with a/h. 

 
 

 
Figure 5: Fundamental natural frequency ratios against a/h for L1/L sets at 0.4 and 0.6. 
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L1/L 

 

(rad/s
) 

 
0.2 0.4 0.6 

 
 

0.2 

 Current Ref [1] Current Ref [1] Current Ref [1]
1 1019.916 1020.137 970.815 966.9525 852.480 842.2205
2 6420.571 6457.396 6424.429 6454.483 6417.650 6448.175
3 17651.16 17872.91 17433.77 17596.57 16876.49 16944.56
4 33674.48 34553.13 32647.85 33100.42 30488.91 29796.26

 
 

0.4 

1 1029.176 1030.095 1007.670 1006.856 947.811 942.7322
2 6358.443 6389.394 6167.999 6174.539 5702.459 5689.841
3 17608.81 17844.86 17326.41 17499.83 16611.97 16792.25
4 33986.26 34866.97 33767.44 34420.09 33017.86 32971.51

 
 

0.6 

1 1034.025 1035.284 1028.455 1029.262 1011.412 1010.864
2 6339.555 6365.914 6064.305 6071.655 5400.865 5371.803
3 17600.06 17807.94 17197.25 17359.27 16401.77 16478.82
4 34026.17 34895.50 33713.21 34572.37 33073.52 33710.43

 
 

0.8 

1 1035.504 1036.884 1035.067 1036.414 1033.700 1034.943
2 6414.198 6440.057 6353.616 6375.921 6163.768 6174.710
3 17595.15 17758.61 16951.02 17077.99 15255.65 15286.83
4 33674.59 34393.87 32081.06 32639.52 29281.01 29529.79

 
Intact 
Beam 

1 1035.812 1037.0189  
2 6428.052 6458.3438   
3 17778.74 17960.564   
4 34279.67 34995.429   

 
Table 1: The first four natural frequencies of a cracked beam with L1/L and a/h for 
cantilever boundary condition. 
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