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Abstract 
 

A beam model for thermal buckling analysis of thin-walled functionally graded (FG) 
open-section beams is presented. The Euler-Bernoulli-Navier bending theory and 
Vlasov torsion theory are employed. The finite element equilibrium equations are 
developed by updated Lagrangian formulation considering a non-linear displacement 
cross-section field that includes the effects of warping torsion and large rotations. 
Material properties are assumed to be graded across the wall thickness and considered 
as a function of temperature. Three cases of the temperature distribution across the 
thickness of the cross-section walls are considered, which are uniform, linear and 
nonlinear, and linear temperature distribution along the beam length. The numerical 
results for thin-walled FG beam with I-section and channel-section are obtained to 
investigate the effects of various values of power law index p, FGM configurations 
and different types of boundary conditions, clamped-clamped (CC), clamped-simply 
supported (CS), and simply supported (SS), on the critical buckling temperature and 
post-buckling behaviour. The accuracy and reliability of the beam model are tested 
by comparison with the results obtained by applying shell finite element models from 
established packages. It is shown that all of the mentioned effects affect the thermal 
buckling analysis of open-section beams. 
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1  Introduction 
 

Thin-walled beams and structures are increasingly used in engineering branches as 
independent elements or as part of more complex structures due to their high strength-
to-weight and stiffness-to-weight ratio. However, these structures show susceptibility 
to buckling failure [1,13]. Therefore the analysis of buckling and post-critical 
buckling response of such structures has been the subject of many researchers 
[10,11,14] 
 

 FG materials are a relatively new class of composite materials originally developed 
by Japanese researchers in the mid-1980s [7] and have begun to be intensively 
developed and used in various constructions in the last three decades due to the 
numerous advantages that such materials provide. With the development of industry 
and modern production processes, structural elements are increasingly found in the 
environment under high temperatures. FG materials, as a combination of ceramics and 
metal, show outstanding mechanical properties, especially thermal and corrosion 
resistance. Many papers have considered the buckling of FGM structures, but only a 
few of them are cited here [2,4,5,8,9,16]. In contrast to the large number of works 
related to the thermal buckling of solid sections, the literature investigating the 
thermal buckling of thin-walled structures is rather scarce [6,17]. 
 

 In the present work, a beam model for the thermal buckling of FG thin-walled 
open-section beams is discussed. The model is based on Euler-Bernoulli-Navier 
bending theory and Vlasov torsion theory, assuming large displacement and small 
strains. The equilibrium equations of the finite elements are developed by an updated 
Lagrangian formulation. As an incremental iterative solution scheme, the Newton-
Raphson method is used. Material properties are assumed to be graded across the wall 
thickness. Three cases of the temperature rise over wall thickness are considered, 
which are uniform, linear, and nonlinear, such as linear distribution along the beam 
length. The numerical results are obtained for FG beams with different boundary 
conditions, FGM configurations, and temperature distributions to investigate the 
effects of the power-law index on the critical buckling temperature and post-buckling 
response. 
 

 The main objective of the paper is to present the developed beam model for the 
thermal buckling analysis of FG thin-walled beam structures considering open cross-
sections and to discuss the influence of the temperature distribution and FGM on 
critical temperatures. The analysis is based on the numerical model developed by the 
authors [3,15] and verified by benchmark shell examples.  

 

2  Methods 
 

 Assume that the beam is made of a functionally graded material. The material 
properties are assumed to vary continuously through the wall thickness according to 
the power law distribution [12]: 

 

P (n,T)=[Po (T) -Pi (T) )]∙ Vc (n) + Pi (T)
        (1) 
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where P represents the effective material property such as Young’s modulus E, shear 
modulus G, and coefficient of thermal expansion α, respectively. The subscripts i and 
o represent the inner and outer surface constituents while Vc is the volume fraction of 
the ceramic phase and there can be many variants of material distributions across the 
wall thickness. In this work, the material properties are assumed temperature-
independent. 
 

The stress-strain relation in terms of generalized Hooke’s law can be written as 
follows: 

σz = E (n,T) ∙ [εz – α (n,T) ∙ ΔT], 
τzs = G (n,T) ∙ γzs

           (2)
 

where σz and τzs are stress components, εz, and γzs are strain components; n, s denote 
the flange normal and transverse directions, while z is parallel to the beam axis; ΔT is 
a temperature change.  
 

 The beam is subjected to a uniform, linear, and nonlinear temperature distribution 
over the beam wall thickness as well as linear along the beam length. In the case of 
linear temperature rise along the beam length, if the axial beam displacements are 
prevented, the temperature can be defined as  

T (z) = TA(z) ∙  (1-z/L) + TB(z) ∙  z/L, 

           (3) 

where indexes A and B represent the end nodes of the beam while L is a beam 

length.
 

 

3  Results 
 

Consider a thin-walled FG I-section beam with the length l = 6 m, height h = 0.2 m, 
width b = 0.1 m, and wall thickness t = 0.005 m, Fig 1. The beam is subjected to linear 
distributed temperature change along the beam length. 
 

 
 

Figure 1: I-section beam. 
 

The web of the I-section is made of ceramic core and FG skins in the ratio 3:4:3. 
The top skin varies from a ceramic-rich to a metal-rich surface, while the bottom skin 
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varies from a ceramic-rich to metal-rich surface. The volume fraction of the ceramic 
Vc can be given by:  

Vc = [(n - t3)/(t2 - t3)]p, t2 ≤ n ≤ t3, 

Vc = 1, t1 ≤ n ≤ t2, 

Vc = [(n - t0)/(t1 - t0)]p, t0 ≤ n ≤ t1.

        (4) 

Flanges of the I-section are made of ceramic-rich bottom skin and FG skin at the top 

in the ratio 3:7. Vc  can be determined as follows: 
Vc = 1, t0 ≤ n ≤ t1 

Vc = [(n - t3)/(t1 - t3)]p, t1 ≤ n ≤ t3

        (5) 
 Two different FG materials were considered: ZrO2/SUS304 and ZrO2/Ti-6Al-4V. 
The ceramic component is ZrO2 (Ec = 168 GPa, αc = 1.86e-5 1/℃), and the metal is 
either SUS304 (Em = 207 GPa, αm = 1.53e-5 1/℃) or Ti-6Al-4V (Em = 105 GPa, αm = 
6.94e-6 1/℃). The Poisson’s ratio is assumed to be constant ν = 0.3. 
  

The thermal buckling of the beam was analysed for three different boundary 
conditions (clamped-clamped, simply supported, and combination) and different 
values of the power-law index p. The results of the author's beam model were verified 
with a numerical model based on shell finite elements. FG material was simulated by 
homogeneous layers. Table 1 shows a comparison of the critical temperatures 
obtained with the beam and shell model for different boundary conditions and 
different power-law values p. It can be seen that the current solutions are in excellent 
agreement with the results of the shell model. 

 

BC C-C C-S S-S 
p 

Material Shell Present Shell Present Shell Present 

0 ZrO2/SUS304 49,03 49,28 25,05 25,17 12,15 12,30 
ZrO2/Ti-6Al-4V 49,03 49,28 25,05 25,17 12,15 12,30 

0,5 ZrO2/SUS304 50,01 50,17 25,55 25,63 12,39 12,52 
ZrO2/Ti-6Al-4V 54,82 54,71 28,01 27,95 13,58 13,66 

1 ZrO2/SUS304 50,51 50,66 25,8 25,89 12,51 12,65 
ZrO2/Ti-6Al-4V 57,58 57,4 29,14 29,32 14,26 14,33 

5 ZrO2/SUS304 51,60 51,76 26,36 26,44 12,78 12,92 
ZrO2/Ti-6Al-4V 63,63 63,29 32,5 32,33 15,74 15,8 

10 ZrO2/SUS304 51,86 52,01 26,49 26,57 12,85 12,98 
ZrO2/Ti-6Al-4V 65,12 64,72 33,26 33,06 16,11 16,16 

Table 1: Critical buckling temperatures 
 

 To initiate buckling, a lateral perturbation force ∆F = 0.001F is applied 
incrementally in the 𝑥-direction at the mid-span for C-C and S-S, and at 0.7L from the 
fixed end, where the largest displacement is expected, for C-S. Figure 2 shows a 
graphical comparison of the critical temperatures for the clamped- simply supported 
beam and power-law index p = 10 considering both FG materials. Material containing 
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metal SUS304 achieves lower buckling temperatures. The diagram shows a good 
agreement between the nonlinear response curve and the eigenvalues. 
 

 
Figure 2: Lateral displacement vs. temperature for different FG materials 

 

4  Conclusions and Contributions 
 

A beam model for thermal buckling analysis of thin-walled FG open-section beam is 
presented. For various boundary conditions, the influence of the power-law index 
magnitude on the critical buckling temperature and post-buckling responses is 
observed. The efficiency of the proposed algorithm has been tested with benchmark 
examples. 
 

 The critical buckling temperature increases with increasing the power-law index p 
and this relationship is recognised for all boundaries considered. As expected, the 
beam clamped at both ends has the highest thermal buckling resistance, and the beam 
with simply supported ends has the lowest.  
 

 The authors’ further research activities in this area will focus on the extension of a 
numerical model to simulate the thermal buckling of FG beam-type structures and 
frames subjected to different temperatures taking into account temperature-dependent 
material properties. 
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