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Abstract 
 

Embryo selection is a fundamental and indispensable step to ensure the success of in 
vitro fertilization. There are two techniques to perform embryo selection: 
preimplantation genetic screening and embryo morphological grading. However, even 
with these techniques, the embryo implantation probability is barely 65% making 
extremely difficult to evaluate the implantation potential. This is mainly due to the 
lack of markers, and the subjectivity associated with experience, judgement, and 
training of the embryologists. In contrast, a segmentation of the embryo structures 
offers detailed, quantitative, and objective assessments; and with that, information to 
predict the pregnancy outcome of embryos. In this work, two independent methods 
for embryos’ component segmentation are proposed. One is based on the combination 
of image processing techniques with genetic algorithms, and the other on a Deep 
Learning segmentation approach. Both methods allow us to approach state of the art 
results for embryos’ component segmentation. 
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1  Introduction 
 

In Vitro fertilization (IVF) is an effective solution to the problem of infertility, and 
also for single mothers or same-sex couples who want to become parents [1]. In the 
IVF process, woman’s ovaries are hyper-stimulated in order to retrieve multiple eggs 
which are then fertilized outside the body.  The fertilized eggs are cultured under 
controlled environmental conditions until they reach the blastocyst stage (5th – 6th day 
after fertilization). The blastocyst (Figure 1) is the first morphologically differentiated 
state of the human pre-implantation embryo, in which cellular structures are arranged 
in four regions: the Trophectoderm (TE), which surrounds the Blastocoel (BC) and 
the Inner Cell Mass (ICM) and the Zona Pellucida (ZP) [2].  

 
 

Figure 1: Scheme of a blastocyst, with the different relevant structures annotated. 
 

Multiple embryos are generated to compensate the fact that not all of them develop 
with an implantation potential [3]. Namely, blastocysts are evaluated and only those 
with top quality are transferred to the uterus. The current best method of assessment 
of embryo quality is Preimplantation Genetic Screening (PGS), which is excellent 
predicting non-implanting embryos but has a modest positive predictive value [4]. 
However, the utilization of this technology remains low due to the incremental cost 
with embryo biopsy and genetic testing [5]. Moreover, this technique is very invasive 
since cells are taken from the embryo at a very early stage and it is possible that cells 
with important genetic material are being collected: when using this technique, it is 
extremely important to avoid cells from the ICM because they will be the cells of the 
embryo's body [6]. Due to these reasons, embryo morphological grading remains the 
current standard for embryo selection. This technique is based on visual inspection of 
morphological characteristics and development rate [5]. It is important to highlight 
that the probability of pregnancy of an embryo with the best characteristics is 65% 
[7]. This low correlation between embryo classification and pregnancy is due, among 
other things, to the great subjectivity related to judgement, training, and expertise of 
the embryologist; in addition to the lack of knowledge of the markers that determine 
the implantability of the embryo [8]. 
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Therefore, being able to quantify why certain blastocysts have more implantation 

potential will help embryologists and researchers to increase success rates while 
minimizing the chances of multiple births due to transferring multiple embryos to 
increase the success rate.  

 
Due to the aforementioned reasons, it is necessary to search for a quantitative and 

objective evaluation procedure in order to increase the probability of implantation 
success. Therefore, the objective of this work is to automatically identify the different 
structures of an embryo at the blastocyst stage. This could improve the workflow in 
both technologies (PSG and morphological grading) and could aid increasing the 
objectivity providing more detailed assessments and quantitative information to the 
embryologist to support and improve the decision-making process during an IVF 
treatment. 

 
The rest of this paper is organized as follows. In the next section, we provide a 

description of the two developed methods for blastocyst region segmentation. 
Subsequently, we perform a comparison of our methods with state-of-the-art 
techniques. Finally, the paper ends with some conclusions.  

All the code developed in this project is available on the following GitHub page: 
https://github.com/mavillot/Blastocyst-Seg  
 
 

 

2  Methods 
 

 
To achieve the objective of this work, an automatic segmentation of the ZP, TE and 
ICM regions will be performed.  In particular, two independent lines of work have 
been developed for this purpose:  

- An unsupervised pathway, based on the use of image processing techniques 
(which are optimized using genetic algorithms).  

- A supervised pathway in which a convolutional neural network will be trained. 
 

We used the publicly available blastocyst dataset [9]. It has 249 blastocyst images 
and the ZP, TE and ICM regions of the blastocysts’ images were manually annotated 
by experts at Pacific Centre for Reproductive Medicine (PCRM) in Canada. This 
database also contains a file showing the classification of each embryo according to 
the grade of expansion, the grade of Trophectoderm and Inner Cell Mass; and the 
result of implantation (implanted, not implanted, and unknown). 
 
2.1 UNSUPERVISED PATHWAY 
 

The unsupervised pathway is based on the work of Saeedi [5,9] which consists of 
applying different image processing techniques to a blastocyst image to extract the 
contours of the edges of the ZP, TE and MCI regions.  
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2.2 ZP 
 

This structure is delimited by two ellipses: an inner ellipse and an outer ellipse. The 
proposed method consists of fitting by least squares the points of the inner and outer 
contour to an ellipse (one for each contour). These points are obtained by performing 
different operations on the image including phase congruency in 6 orientations, 
convex hull, Canny edges and Watershed segmentation. Figure 2 shows the different 
steps followed to obtain the ellipse that models the inner edge of ZP. Figure 3 shows 
the procedure followed to detect the outer edge of ZP. Once both ellipses have been 
calculated, the ZP region is perfectly delimited, see Figure 4. 

 
 
 

 
a. Original 

image 
b. Phase congruency (pc) in 

6 orientations 
c. Union of 

thresholded pc
d. Filtering with 

convex hull
e. Least squares 

 
Figure 2: Detection of the inner ZP boundary 

 
 
 

     
a. Original image b. Canny and 

dilating 
c.  Watershed d. Filtering e. Least squares 

 
Figure 3: Detection of the outer ZP boundary 

 
 

 
  

Figure 4: Segmentation of ZP 
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2.3 TE and ICM 
 

The workflow for the detection of the TE and ICM structures is common. The 
image is divided into small regions using the Watershed algorithm and with the 
calculation of different textures each region is classified into two classes: textured or 
smooth. Biologically, TE always appears at the edge of the blastocyst and ICM in a 
more central position. With this information, the textured regions attached to the inner 
edge of ZP (calculated in the previous process) are associated with TE and the textured 
regions in the center are associated with ICM. These regions form the seeds of TE and 
ICM. All regions that are connected to the TE seed and have low intensities are added. 
The edges of this mask are extracted using the edge linking algorithm developed by 
Kovesi [10], as illustrated in Figure 5. Different regions are iteratively added to the 
ICM seed if they verify a similarity condition based on textures and a 8-connectivity 
condition. Finally, the Distance Regularized Level Set Evolution algorithm [11] is 
applied.  

 
 

 
 

a. Textured regions 

 
TE 

   

b1. TE Seed c1. Union of regions 
with low  
intensity

d1. Union of regions 
with low intensity 

 

ICM 
 

b2. ICM Seed c2. Condition of 
proximity & similarity 

d2. DRLS  

 
Figure 5: Segmentation of TE and ICM 

 
Most image processing techniques involved in ZP, TE and ICM segmentation 

workflows have parameters that can be adjusted to improve their performance 
(thresholds, filter size, degree of connection...). In order to find the parameters that 
best adjust the segmentation of the different structures, we have used genetic 
algorithms [12]. These algorithms are based on Darwin's theory of evolution and are 
used to obtain suitable solutions to complex optimization problems. Towards that aim, 
the function to be optimized is established, in our case an error function (the difference 
between the predicted region and the gold standard) to be minimized is defined; and 
an also an initial population, which are different sets of parameters for which the error 
is calculated. The parameter sets that minimize the error the most are selected; they 
are crossed two by two (the values of some parameters are exchanged) according to 
an established crossing probability and they are mutated (adding or subtracting a 
random value to some parameter of the set) according to the established mutation 
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probability. This new set of parameters forms a new population called a generation. 
Genetic algorithms are iterative algorithms, so for each generation, selection, 
crossover, and mutation are performed. After a set number of generations, a solution 
is reached. The higher the number of generations, the closer the solution obtained is 
to the real solution. For the implementation of these genetic algorithms, we have 
followed the methodology proposed in [12]. 

 
2.4 SUPERVISED PATHWAY 
 

In the supervised path, masks are used to train a segmentation model. To complete 
the segmentation objective, a convolutional neural network will be trained, more 
specifically a U-Net architecture [13].  

For training this network, the database has been divided into a training set (85%) 
and a test set (15%). For the TE and ICM segmentation, the same architecture 
proposed in [14] has been used and for the ZP segmentation, the basic U-Net 
architecture [13] was used. Both networks have been trained for 30 epochs using the 
Keras library and with a GPU NVIDIA GeForce RTX 3060. To evaluate the 
performance of the network, the masks of the test set images are obtained, and the 
different metrics are calculated.  
 

 
3  Results 
 

Once the two paths have been implemented, the models have been evaluated on the 
test set. Figure 6 shows the final result of segmenting a blastocyst following the 
unsupervised and supervised pathway compared with the ground truth.  

For each class (ZP, TE and MCI) the problem is considered as a binary problem 
and the following metrics are calculated: accuracy, precision, recall, specificity and 
the dice coefficient. A detailed description of these metrics can be found in Harun's 
work [14]. In Tables 1, 2, and 3 we compare the results with state-of-the-art methods 
based on same dataset. 
 

 
 

  

a. Ground truth b. Unsupervised c. Supervised 
 

Figure 6: Results of the blastocyst segmentation
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ZP Accuracy Precision Recall Specificity Dice 
Coefficient

Farias et al. [8] 0.94 0.85 0.69 0.98 0.75 

Unsupervised 0.91 0.79 0.62 0.97 0.67 

Unsupervised + genetic  

algorithm 

0.91 0.79 0.64 0.97 0.68 

Supervised 0.96 0.90 0.78 0.99 0.83 

 

Table 1: ZP segmentation results. In bold the best results.  
 

 
Regarding the segmentation of the ZP, we observe that the proposed supervised 

method outperforms the Farias’ model and that the unsupervised methods are not far 
from the state of the art. When selecting the set of parameters obtained by minimising 
the above-mentioned error function using genetic algorithms, we manage to slightly 
improve the recall and Dice coefficient’s results. 

 
 

ICM Accuracy Precision Recall Specificity Dice 
Coefficient 

Jaccard 
index 

Saeedi et al. [5] 0.91 0.77 0.84 0.92 0.79 - 

Saeedi et al. [5] 
with DRLS 

0.93 0.84 0.78 0.96 0.83 - 

Kheradmand et al. 
[15] 

0.93 0.76 0.56 - 0.64 0.48 

Kheradmand et al. 
[16] 

0.96 - - - 0.87 0.77 

Rad et al. [17] - 0.79 0.87 - 0.83 0.70 

Rad et al. [18] 0.98 0.89 0.92 - 0.90 0.82 

Harun et al. [14] 0.99 0.95 0.94 - 0.94 0.89 

Farias et al. [8] 0.96 0.87 0.62 0.99 0.67 - 

Unsupervised 0.93 0.79 0.86 0.95 0.64 - 

Supervised 0.98 0.91 0.84 0.99 0.86 0.78 

 
Table 2: ICM segmentation results. In bold the best results.  
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TE Accuracy Precision Recall Specificity Dice 
Coefficient 

Jaccard 
index 

Saeedi et al. [5] 0.86 0.69 0.89 0.86 0.77  -  

Singh et al. 
[19] 

0.87 0.71 0.83 - 0.77 0.62 

Kheradmand 
[15] 

0.9 0.69 0.8 - 0.74 0.59 

Harun et al. 
[14] 

0.98 0.92 0.93 - 0.92 0.85 

Farias et al. [8] 0.93 0.80 0.59 0.98 0.67 - 

Unsupervised 0.91 0.78 0.91 0.91 0.69  

Supervised 0.97 0.89 0.85 0.99 0.77 0.87 

 
 

Table 3: TE segmentation results. In bold the best results.  
 

The results for both the supervised and unsupervised pathways regarding TE and 
ICM are very close to those found in the literature. It is observed that the supervised 
model obtains better results in all metrics except recall. However, this does not lead 
us to discard the unsupervised workflow, since when generalising to new images only 
a parameter adjustment would have to be made, whereas for the U-Net model it would 
be necessary to retrain the network with similar images. Moreover, recall is the most 
relevant metric if the aim is to minimise the risk of extracting a biopsy of the ICM 
(which in the future will be the cells of the embryo's body), something very common 
for assessing implantability, but which could completely ruin the structure of the 
future foetus and thus its viability. 
 

4  Conclusions and further work 
 

In Vitro Fertilisation (IVF) is a technique whose use is increasing. Despite great 
advances in IVF procedures and techniques, the implantability of an embryo remains 
an unknown. Despite the efforts of clinicians to find the best embryos, the probability 
of success of an embryo considered to be excellent is only 65%. 
 

An automatic identification of blastocyst structures is not only useful to improve 
the workflow in evaluation work, but also provides a source of detailed, quantitative 
and objective information to support embryologists in their decision-making. 

Two independent workflows have been proposed for this purpose:  
- An unsupervised pathway based on image processing techniques and genetic 

algorithms.  
- A supervised pathway, a U-Net segmentation model.  
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With both procedures, results close to the state of the art were obtained. Although 
the supervised pathway has shown better results than the unsupervised pathway, it is 
possible that information from both procedures can be used to obtain more robust 
predictions. Among the next steps of this project is to identify the different structures 
that are formed from fertilisation of the egg to the blastocyst. To obtain quantitative 
information on this phenomenon so that, together with the measurements made in the 
blastocyst, this information can be correlated with the implantability of the embryos. 
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