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Abstract

A theoretical formulation for the bifurcation of pressurized and axially stretched thin-
walled cylinders obeying compressible hyperelastic material law is derived. Analyt-
ical solutions are provided for three bifurcation conditions, namely prismatic, sym-
metric, and composite. Validation of the formulation in the incompressible limit is
performed by limiting the bulk modulus towards incompressibility and comparing it
against bifurcation analysis for incompressible materials analyzed in previous studies.
Analytical solutions are obtained for two strain energy functions. Finite element simu-
lations are performed for validating numerically the analytical results for compressible
behavior. A stabilizing effect in the critical values of deformation is observed with an
increase in the compressibility of the material.
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1 Introduction

We propose a general theory that describes the bifurcation of thin-walled (hyperelas-
tic) cylinders which are subjected to inflation and axial stretching. Our analysis ex-
tends the theory presented by [1] to compressible materials. We describe a theoretical
framework to understand the incremental deformation equations eventually leading
to bifurcation conditions. Three different bifurcation conditions are studied namely
prismatic, symmetric, and composite bifurcations. Numerical analysis based on finite
elements (FE) is performed to validate numerically the results obtained analytically.
A limiting case towards incompressibility is also analyzed.

2 General equations

The bifurcation analysis of a thin-walled cylinder is based on incremental equations
which involve the superimposition of small deformations on a state which has finitely
deformed [1].

2.1 Incremental motion equations

Consider a line element dX in the reference configuration βref of a deformable (hy-
per)elastic body. The body undergoes a deformation to attain an intermediate de-
formed configuration βint. The line element dX is transformed to dx0 through the
deformation gradient tensor F0. The intermediate configuration further undergoes an
incremental deformation thereby producing the current deformed configuration βcur.
The line element dx0 is transformed to dx via the deformation gradient tensor F . The
total deformation gradient tensor (mapping dX to dx) is F = FF0.

The incremental change in the line element is represented by ∆dx,

∆dx = dx− dx0. (1)

With respect to the reference configuration, ∆dx can be represented as

∆dx = FdX − F0dX = (F− F0)dX = ∆FdX. (2)

Therefore,
∆F = F− F0 = (F − I)F0 = ∆FF0. (3)

where I is the second-order identity tensor. ∆F can be further represented as

∆F = F − I = (I+∇u)− I = ∇u, (4)

with ∇u the gradient of the (incremental) displacement field u = x−x0 with respect
to the intermediate configuration βint.
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2.2 Incremental stress equations

The total nominal stress tensor (N) is expressed in terms of the Cauchy (σ) and second
Piola-Kirchhoff (S) stress tensors as

N = JF−1σ = SFT, (5)

where J is the determinant of F.
The nominal stress tensor can be written as

N = N0 +∆N = N0 + S0∆FT +∆SFT
0 , (6)

where N0 is the contribution to N from the intermediate deformed configuration,
while ∆N is the contribution to N from the incremental deformation. On further
expansion of Eq 6, ∆N becomes

∆N = (S0 ⊕ I+ I⊙ F0 : C0 :
1

2
(FT

0 ⊙ I+ I⊕ FT
0)) : ∆F = A0 : ∆F, (7)

where (A ⊙ B)ijkl = AikBjl and (A⊕B)ijkl = AilBjk in index notation, ∆C =

FT
0∆F + ∆FTF0 with C = FTF the right Cauchy–Green tensor, and C = 2∂S/∂C

is the material fourth-order elasticity tensor. We recognize A as the fourth-order elas-
ticity tensor for the work-conjugate tensors {N,F} [2].

2.2.1 Incremental stress equations with respect to intermediate configuration

Consider an additive decomposition of the Cauchy stress σ into the “extra” part σx

(i.e., that derived from the strain energy function) and a volumetric part σvol

σ = σx + σvol = σx − pI, (8)

where, for convenience to obtain the incompressible limit, we represent σvol as −pI
(with p the Lagrange multiplier that enforces incompressibility in that limit only). The
final form for ∆N , where N = JF−1σ is the nominal stress tensor with respect to
the intermediate configuration, can be written as

∆N = Bx
0 : ∇u+ p0∇u− p0∆JI−∆pI, (9)

where

Bx
0 = J−1

0 F0 ⊙ I : Ax
0 : I⊙ FT

0

= σx
0 ⊡ I+ J−1

0 F0 ⊙ F0 : Cx
0 : FT

0 ⊙ FT
0

= σx
0 ⊡ I+ cx0 (10)

Note that c = J−1F⊙ F : C : FT ⊙ FT is the spatial fourth-order elasticity tensor.
Ultimately, Eq 9 represents the general form for the incremental nominal stress

for non-linear elastic materials in the intermediate configuration. This equation is
comparable to Eq 103 in [3]. Under detailed inspection, it can be concluded that Eq
103 in [3] is a case-specific equation for non-linear elastic incompressible materials.
Case-specificity of Eq 103 in [3] can be justified due to the absence of term −p0∆JI
from Eq 9, since for incompressible materials J = 1 and ∆J = 0.
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3 Compressible thin-walled circular elastic cylinders

For a thin cylinder, let (r, θ, z) be the polar coordinates in the current deformed con-
figuration, where r is the radius corresponding to the middle surface of the membrane,
0 ≤ θ ≤ 2π and 0 ≤ z ≤ l (l is the deformed length of the cylinder after axial stretch
λz). In Cartesian coordinates, let a1 and a2 be the unit basis vectors corresponding to
θ and z in the current deformed configuration, and a3 be the unit normal vector in the
outward direction to the membrane middle-surface. u can be written as

u = va1 + wa2 + ua3. (11)

and

∇u =

 1
r
(u+ vθ) vz −1

r
(uθ − v)

1
r
wθ wz −uz

1
r
(uθ − v) uz η33

 , (12)

where the subscript of the tensor element denotes the derivative of u with the particular
direction in polar coordinates. Additionally, we use the notation ηij = ∇uij . The last
term η33 is to be derived from the volumetric part of the strain energy density function.

Denoting ∆Nij as Πij , the incremental equilibrium equations similar to [3] are

Π11,1 +Π21,2 +
1

3
Π13 −

P

h
η31 = 0

Π12,1 +Π22,2 −
P

h
η32 = 0

Π13,1 +Π23,2 −
1

r
Π11 +

P

h
(η11 + η22) +

∆P

h
= 0. (13)

where P is the internal pressure and h is the thickness of the cylinder in the current
configuration. In compact form, they are represented as

Σ1
uθ + vθθ
r2

+ Σ2vzz + Σ3
wθz

r
= 0

Σ4
uz
r

+ Σ5
vθz
r

+ Σ6
wθθ

r2
+ Σ7wzz = 0

Σ8
u

r2
− Σ9

uθθ
r2

− Σ10uzz + Σ11
vθ
r2

+ Σ12
wz

r
− ∆P

h
= 0. (14)

3.1 Prismatic bifurcations

In order for the prismatic bifurcations to occur, the dependence of v, w and u (cf. Eq.
11) is considered only on θ. Following the line of reasoning provided in equations
32-36 in [1] and implementing them on the given compressible material case, the
prismatic bifurcation condition becomes Σ1 = 0. However, for rubber-like solids,
Σ1 > 0 [1], which deems bifurcation impossible.
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3.2 Symmetric bifurcations

Symmetric bifurcations condition is characterized by the dependence of v, w and u
only on z reducing Eq 14 to

Σ2vzz = 0

Σ4uz + Σ7rwzz = 0

Σ8u− Σ10r
2uzz + (Σ3 − Σ2 + Σ10 − Σ1 + Σ8)rwz =

∆Pr2

h
. (15)

Therefore, only w and u depend on z. The form for w and u can be assumed as

u(z) = u0e
γz

w(z) = w0e
γz (16)

The general solution of u and w becomes[
u
w

]
= c1

[
0
1

]
+ c2

[
1

− Σ8z
Σ12r

]
+

[
c3

c4
Σ4

Σ7ν̂

]
cos(

ν̂z

r
) +

[
c4

−c3 Σ4

Σ7ν̂

]
sin(

ν̂z

r
), (17)

The modes of symmetric bifurcation can be determined for a particular ratio of l/r
(l is the deformed axial length and the r is the deformed mid-surface radius of the
cylinder under consideration) by applying boundary conditions (u(z = 0) = 0, u(z =
l) = 0, w(z = 0) = 0, w(z = l) = 0) to Eq 17, and determining a non-trivial solution.

3.3 Composite bifurcations

Dependence of u, v and w on θ and z would give rise to composite bifurcations. With
∆P = 0, the form of u, v and w can be expressed as

u(θ, z) = u0(cosmθ)(e
γz)

v(θ, z) = v0(sinmθ)(e
γz)

w(θ, z) = w0(cosmθ)(e
γz), (18)

The general solution for incremental displacements isuv
w

 =

cos θ 0 0
0 sin θ 0
0 0 cos θ

(c1
 1
−1
0

+ c2r

 z
r
−z
r

−1

+ c3

α1

β1
1

 eν1 z
r+

c4

−α1

−β1
1

 e−ν1
z
r +

c5α2

c5β2
c6

 cos
ν̂2z

r
+

−c6α2

−c6β2
c5

 sin
ν̂2z

r

)
,

(19)

where, ν̂2 = iν2 and α1, β1, α2 and β2 are the functions of Σ1,Σ2,Σ3,Σ4,Σ5,Σ7,Σ10,Σ11

and Σ12.
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4 Numerical validation

In this section, we delineate the validation of the theory presented in this study nu-
merically. The theory for compressible materials was implemented on two material
models - neo-Hookean (Eq 20) and Ogden (Eq 21). A coupled form of the strain-
energy function was considered for each material model

ψ =
µ

2
(I1 − 3− 2 ln J) +

1

2
k(J2 − 1) (20)

ψ =
n∑

p=1

µp

αp

(λ
αp

1 + λ
αp

2 + λ
αp

3 − αp ln J)) +
1

2
k(J2 − 1), (21)

where, n = 3, I1 = tr(FTF), µ and µp are the shear moduli, αp are dimensionless
constants, k represents the bulk modulus,and λ1, λ2, λ3 are the stretches in the prin-
cipal directions. The property 2µ =

∑n
p=1 µpαp holds true. For the values of shear

moduli and dimensionless constants, refer to Table 1.

Table 1: Values for shear moduli and dimensionless parameters for the models

Material µ [MPa] µ1 [MPa] µ2 [MPa] µ3 [MPa] α1 [-] α2 [-] α3 [-]

ne-Hookean 0.4225 - - - - - -
Ogden - 0.63 0.0012 -0.01 1.3 5.0 -2.0

Finite element (FE) simulations were performed in order to validate the theory
presented in this study. In accordance with [4], the undeformed dimensions of the
cylinder were considered as follows: inner radius Ri = 4mm, thickness H = 0.2mm,
and length L = 80mm. A geometrical perturbation was introduced in the middle
section of the cylinder by increasing the radius [Ri(z = L/2) = 4.004], thereby intro-
ducing a slight curvature of the cylinder along the axial length. A constant thickness
was maintained throughout the length of the cylinder. The meshed cylinder consisted
of 25200 hexahedral elements. The radial direction consisted of 5 elements to capture
a realistic stress gradient due to radial expansion while being pressurized (pressure
applied on the inner surface of the cylinder).

The cylindrical geometry was prescribed with neo-Hookean material model (for
material parameters see Table 1). First, the FE model was validated against the results
from a previous study ( [4]; figure 6) for an incompressible case (where, k = 1000µ in
Eq 20). Three axial stretches were prescribed (λz = 1.2, 1.5, 1.8) in order to validate
the model against the analytical solution. Thereafter, the FE model was validated
against the analytical solution for compressible cases (where, k = 1µ and 5µ). All
simulations were performed in FEBio [5].

Similar to [4], Figure 1 indicates the validation of the analytical solution of sym-
metric bifurcation condition with FE analysis. The symmetric bifurcation condition is
indicated by Eq 15, where L/R = 20 was considered (also for the FE model; sec 6.2).
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The equality criterion from Eq 15 was considered to plot the monotonically decreasing
analytical curves in 1.

Figure 1: Normalized values of critical pressures at which symmetric bifurcation oc-
curs for given axial stretches. Continuous curves indicate analytical solu-
tions, while the discrete values indicate FE simulation results. The curves
are for neo-Hookean material model.

5 Concluding remarks

In conclusion, by incorporating the contribution of an additional volumetric term to
the incremental nominal stress tensor, we provide a formulation of bifurcation analy-
sis for thin-walled compressible cylinders. The bifurcation behavior for compressible
materials is similar to that of incompressible materials. In the limit of incompressibil-
ity (µ/κ = 0), incompressible behavior is recovered from the bifurcation equations
for the compressible case.
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