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Abstract 
 

This paper presents two different (semi)analytical methods for the limit analysis of 
masonry structures, i.e., a static approach known as “stability area method”, 
theoretically framed within the lower bound theorem of limit analysis, and a 
kinematic approach, based on the upper bound theorem. The analysis is conducted 
on case studies of masonry domes and vaults subjected to a vertical load applied at 
the crown. The collapse load is obtained by considering different hypotheses on the 
masonry tensile and compressive strengths. The results are compared with those 
deriving from experimental tests available in the literature. 
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1  Introduction 
 

In this paper, the stability analysis of masonry domes and vaults subjected to 
gravity-induced loads is performed by considering the self-weight and a vertical 
point load applied at the crown – which in domical structures corresponds to an 
element of architectural interest, i.e., the lantern.  
 

Given the complex mechanical behaviour of masonry, this issue has been tackled 
by means of very different approaches, ranging from the implementation of Finite 
Element or Distinct Element codes [1,2] to numerical methods based on the Thrust 
Network Analysis [3,4] or homogenized limit analysis [5]. A thorough examination 
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of the state of the art on such issue is out of the scope of this paper. The interested 
reader can be addressed to [6] for a more accurate overview. 

 

The aim of this paper is to obtain fast methods to predict the bearing capacity of 
masonry domes and vaulted structures. To this purpose, the results obtained via two 
different approaches framed within the context of limit analysis are compared. The 
first method re-visits a classical graphical procedure [7] based on the lower bound 
theorem of limit analysis. The second method exploits the upper bound theorem of 
limit analysis and the virtual work theorem [6,8]. 
  
2  Static method 
 

The static approach is a modern version of the stability area method, a historical 
procedure originally conceived for symmetric masonry arches by Durand-Claye [7] 
and later extended by himself, even if not entirely coherently, to masonry domes [9]. 
In recent years this technique has been re-visited and computerized by Aita, Barsotti 
and Bennati [10,11] by resulting in an effective tool for assessing the existence of 
statically admissible solutions in symmetric masonry structures. This method allows 
one to take into account strengths requirements for masonry, such as a limited 
compressive strength, and a limited (or nil) tensile strength. For the purposes of this 
contribution, an infinite friction coefficient is assumed. 
 

As regards symmetric masonry arches, the application of the stability area 
method is straightforward by considering both strength limitations and equilibrium 
conditions of each portion of the arch comprised between the ideal vertical crown 
section and an arbitrary joint [10]. Conversely, in assessing the stability of domes 
and vaults their 3-dimensional behaviour must be considered, together with the 
consequences of the hypotheses on the mechanical behaviour of masonry. Namely, 
in masonry domes the weak tensile strength of the material causes cracking starting 
from the lower portion of such structures, where the hooping action vanishes as the 
stresses exerted along the parallels exceed the tensile strength [12]. The cracked 
dome can be assumed to be divided into a number of lunes behaving two by two as 
independent arches (Figure 1). An analogous mechanical behaviour is found in 
cloister vaults, where the half-arches of variable width are comprised between 
vertical planes passing through the diagonals of the square (or rectangular) plan 
(Figure 2a,b). 
 

The starting point of the static analysis consists in imposing the equilibrium of a 
single lune. 

 

In Figure 1, the scheme of two domes of revolution is shown: (a) is a 
hemispherical dome of extrados radius R and constant thickness t; (b) represents an 
ogival dome with oculus. In Figures 1c and 1d the plan of such domes and the 
corresponding subdivision into lunes is shown. In Figures 2a, 2b, the scheme of a 
cloister vault obtained by intersecting two identical semi-circular barrels vaults of 
constant thickness t, with extrados radius R, is represented. Both structures are 
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subjected to their self-weight, with unit weight , and the weight of a point vertical 
load, , at the top crown. 

For the domes, the amplitude of each lune is supposed to be defined by a ‘small’ 
angle d (Figures 1c, 1d); for the cloister vault, the amplitude of the half-arches is 
equal to 𝜋/2 (Figure 2b). Since these lunes behave as one half of a symmetric arch 
of variable width, for each of the masonry structures represented in Figures 1 and 
2a,b, the equilibrium of the lune’s portion comprised between the crown and any 
joint, identified by the angle 𝛼 shown in Figure 2c, is considered. 
 

 
 

Figure 1: Scheme of masonry domes with lantern: (a) hemispherical dome;  
(b) ogival dome with oculus; (c,d) subdivision into lunes.  

 
 

 
 

Figure 2: Scheme of cloister vault with a vertical load at the crown: (a) semicircular 
profile; (b) subdivision into four half-arches of variable thickness; (c) equilibrium of 
a voussoir comprised between the crown and joint 𝛼; (d) cross-section at any joint . 
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In addition to the self-weight, a single lune is then subjected to a vertical crown 

load equal to 𝜆/𝑛, where 𝑛 ൌ 2𝜋 𝑑𝜑⁄  for domes of revolution, 𝑛 ൌ 4 for cloister 
vaults. Because of symmetry, at the crown, a horizontal thrust, P, acts with an 
eccentricity 𝜉 with respect to the centroid, C, of the ideal crown joint (Figure 2c). 
For domes with oculus, the point of application of P is referred to a given reference 
point. The equilibrium conditions related to the portion of the lune comprised 
between the ideal vertical crown section and any joint  allows one to write the 
formal expressions for the normal force, 𝑁 ൌ 𝑁ሺ𝛼, 𝑃ሻ, the shear force, 𝑇 ൌ 𝑇ሺ𝛼, 𝑃ሻ, 
and the bending moment, 𝑀 ൌ 𝑀ሺ𝛼, 𝑃, 𝜉ሻ (positive if acting as shown in Figure 2c). 
  
 

As regards the strength requirements, it is well known that the behaviour of 
masonry is very complex [12]. According to the simplifying hypotheses proposed by 
Heyman [13], masonry can be considered a no-tension material with infinite 
compressive strength. A more precise description, however, should consider its low 
tensile strength, ft, and high compressive strength, fc. If ft and fc are assumed to be 
both finite, the limit bending moment at any cross section is given by: 
 

𝑀௟௜௠ ൌ
ሺ௙೎ ௧ ௕ାேሻሺ௙೟ ௧ ௕ିேሻ

ଶ௕ሺ௙೎ ା௙೟ ሻ
, (1) 

 

where 𝑁 ൌ 𝑁ሺ𝛼, 𝑃ሻ and 𝑏 ൌ 𝑏ሺ𝛼ሻ (Figure 2d) is the width of the cross section at 
any joint 𝛼. More in detail, for domes of revolution, the conical surface of the joint 
can be approximated by a rectangle of area t𝑏 (Figure 2d), where 𝑏 ൌ 𝑏ሺ𝛼ሻ ൌ
ሺ𝑅 െ 𝑡 2⁄ ሻ sin 𝛼  d𝜑 for hemispherical domes (Figures 1a, 2c), 𝑏 ൌ 𝑏ሺ𝛼ሻ ൌ
ሾሺ𝑅 െ 𝑡 2⁄ ሻ sin 𝛼 െ 𝑐ሿd𝜑 for ogival domes with oculus (Figure 1b), 𝑏 ൌ 𝑏ሺ𝛼ሻ ൌ
2ሺ𝑅 െ 𝑡 2⁄ ሻ sin 𝛼 for cloister vaults (Figure 2a). 
 

 
At any joint, the bending moment, 𝑀ሺ𝛼, 𝑃, 𝜉ሻ, is bounded by the limit value, 

𝑀௟௜௠ ൌ 𝑀௟௜௠ሺ𝛼, 𝑃ሻ, i. e. , െ𝑀௟௜௠ሺ𝛼, 𝑃ሻ ൑ 𝑀ሺ𝛼, 𝑃, 𝜉ሻ ൑ 𝑀௟௜௠ሺ𝛼, 𝑃ሻ. 
 

 
Let us now consider the ሺ𝑃, 𝜉ሻ plane. For any given joint 𝛼, the two curves 

implicitly defined by 
  
𝑀ሺ𝛼, 𝑃, 𝜉ሻ ൌ േ𝑀௟௜௠ሺ𝛼, 𝑃ሻ (2) 
 

identify a region, denoted by  𝐴ఈ, whose points ሺ𝑃, 𝜉ሻ correspond to statically 
admissible solutions (i.e., fulfilling equilibrium and strength requirements) for the 
portion of lune comprised between the ideal vertical crown section and any joint  
(Figure 3a). 
 
 

The procedure described above can be repeated for all the joints along the lune. 
By intersecting all the 𝐴ఈ െ regions, the stability area A, is obtained, i.e., the locus 
of all the points of coordinates ሺ𝑃, 𝜉ሻ corresponding to statically admissible 
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solutions in terms of crown thrust, P, and eccentricity, 𝜉, with respect to point C (see 
the green region in Figure 3a).  
 

By considering a single lune/arch, the shape of the stability area provides a 
preliminary assessment of the system’s stability. By adopting the strength 
requirements given by (1), the existence of statically admissible solutions is 
guaranteed if the stability area is non-vanishing (Figure 3a). These solutions 
correspond to an infinite set of admissible thrust lines. For a single lune, the collapse 
condition is found when the stability area reduces to a single point (Figure 3b). To 
determine the collapse load for masonry domes and cloister vaults, the procedure 
just described is only the first step. Indeed, the occurrence of a kinematically 
admissible mechanism for the entire structure has to be checked [11]. In the 
examples examined in this paper (see Section 4) the collapse mechanism identified 
when the stability area shrinks to a single point corresponds to a kinematically 
admissible mechanism, both for the single lune and for the entire dome/cloister vault 
(Figure 4). 
 

 
 

Figure 3: Stability area A related to one of the four half-arches forming a cloister 
vault with t = 0.12 m, R = 1 m, 𝛾 = 20 kN/m3, ft = 0, fc → ∞: 𝜆 = 2 kN (a); 

𝜆 ൌ 𝜆௟௜௠ ൌ 3.4804 kN (b). 
 

3  Kinematic method 
 

In the kinematic approach, based on the principle of virtual work, a suitable 
mechanism is assumed a priori. As a starting point, such mechanism is chosen by 
considering the results of analytical and numerical investigations on masonry domes 
and vaults [6, 14], as well as the analyses carried out according to the static method 
described in Section 2; the analysed structures are implicitly assumed to be 
assemblages of rigid bodies with unilateral constraints. For the hemispherical dome 
of Figure 1a,c, a kinematically admissible mechanism characterized by the 
occurrence of three annular flexural hinges is assumed, namely, an extrados hinge at 
the crown, an intrados hinge at an intermediate joint 𝛼ு, and an extrados hinge at the 
base of the dome (Figure 4a). For the cloister vault of Figure 2a,b, an analogous 
mechanism is considered, with three cylindrical flexural hinges (Figure 4b).  
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The procedure is described in detail in [6], to which interested readers are 
referred. For the purposes of this contribution, it is sufficient to briefly recall the 
main steps.  

 
 

Figure 4: Kinematically admissible mechanism  
for a masonry dome (a) and for a cloister vault (b). 

 
 

Referring to the pre-selected mechanism, let Φଵ denote the rotation rate of the 
hinge at the base of the dome/vault and Φଵ ൅ Φଶ the rotation rate of the intermediate 
hinge, 𝛼ு (Figure 4). The interfaces on a meridian between two contiguous lunes (in 
masonry domes) and those on the diagonal arches (in cloister vaults) are exclusively 
subjected to a jump in normal velocity, which can be expressed in terms of Φଵ and 
Φଶ. 

 

The internal power  𝑃ௗ dissipated on the meridional or diagonal interfaces can 
then be expressed in closed form as the sum of that between blocks 1 and 3 and that 
between blocks 2 and 4 (Figure 4), by considering the ultimate tensile strength of the 
vault along the meridian/diagonal arches, 𝑓௧ௗ. Then, the power  𝑃௪ done by the 
dome/vault self-weight is evaluated, after analytically determining the location of 
the centroids of blocks 1 and 2 (Figure 4). Finally, the dissipation  𝑃௛ along the 
horizontal hinges at joint 𝛼ு and at the base, is analytically determined by taking 
into account the ultimate tensile strength, 𝑓௧, along these hinges. 

 

The kinematic collapse load can be therefore expressed in closed form: 
 

𝜆 ൌ 𝑛  ௉೓ା ௉೏ି ௉ೢ

 ௫಴మ஍మ
, (3) 
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where 𝑥஼మ
 is the horizontal distance between the instant rotation center C2 and the 

vertical straight line passing through the crown (Figure 5a); 𝑛 ൌ 2𝜋 𝑑𝜑⁄  for the 
dome of revolution, 𝑛 ൌ 4 for the cloister vault. 
 

The position of joint 𝛼ு is univocally identified by minimizing the kinematic 
collapse load, . 

  

 
Figure 5: (a) Kinematic chain and location of the instant centers of rotation;  

(b) thrust line corresponding to the collapse load (cloister vault with t = 0.12 m,  
R = 1 m, 𝛾 = 20 kN/m3, ft = 0, fc → ∞; 𝜆 ൌ 𝜆௟௜௠ ൌ 3.4804 kN). 

 
4  Results 

 

The static and kinematic approaches described in Sections 2 and 3 are now applied 
to two vaulted masonry structures experimentally tested: a hemispherical dome and 
a cloister vault with radius 𝑅 = 1 m, thickness 𝑡 = 0.12 m, and unit weight 𝛾 ൌ
20 kN/mଷ (see Figure 1a,c; Figure 2a,b) [15, 16]. The mechanical behaviour of 
these structures has been studied in [6, 17], providing useful material for a suitable 
comparison between different methods. 
 

The collapse load can be obtained through the static method by drawing the 
stability area in the ሺ𝑃, 𝜉ሻ plane. The analysis is performed by subdividing the dome 
into 360 lunes of amplitude 𝑑𝜑 ൌ 1°, whereas the cloister vault is subdivided in four 
half-arches of amplitude 𝜋 2⁄ . In turn, each lune is subdivided in 90 blocks. 

 

Regarding the tensile and compressive strength, four different hypotheses on the 
masonry mechanical behaviour are considered:  

 
(a) ft = 0.05 MPa, fc = 2.2 MPa;  
(b) ft = 0.05 MPa, fc → ∞;  
(c) ft = 0, fc ൌ 2.2 MPa; 
(d) ft = 0, fc → ∞.  
 

The static collapse load, for each of these cases, is obtained by progressively 
increasing the value of , until a threshold value, lim, is reached as the stability area 
vanishes. As an example, in Figure 3b the stability area corresponding to the 
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collapse load for the cloister vault under examination is plotted, by assuming ft = 0, 
fc → ∞. The limit value is 𝜆 ൌ 𝜆௟௜௠ ൌ 3.4804 kN. 

 

As can be seen from the outcomes related to the dome (Table 1) and to the 
cloister vault (Table 2), the value of 𝜆௟௜௠ is extremely sensitive to the value of the 
tensile strength, however low. For the cases corresponding to a limited compressive 
strength, identified in Table 1 and Table 2 with an asterisk (*), the crown hinge is 
assumed to be defined by angle 𝛼 ൌ 1°, since the area of the cross section would 
vanish at 𝛼 ൌ 0° and a singularity in the bending moment capacity at this section 
would occur. 
 

Table 1. The collapse load, lim, for the benchmark dome (R = 1 m, 𝑡 = 0.12 m). 

Masonry strength Collapse load, 𝝀𝒍𝒊𝒎 
Intermediate hinge 
location, 𝜶𝑯 

ft = 0.05 MPa, fc = 2.2 MPa* 8.892 kN 27° 

ft = 0.05 MPa, fc → ∞ 10.748 kN 31° 

ft = 0, fc = 2.2 MPa* 2.599 kN  41° 

ft = 0, fc → ∞ 2.7336 kN 42° 
 

Table 2. The collapse load, lim, for the benchmark cloister vault (R = 1 m, 𝑡 = 0.12 m). 

Masonry strength Collapse load, 𝝀𝒍𝒊𝒎 
Intermediate hinge 
location, 𝜶𝑯 

ft = 0.05 MPa, fc = 2.2 MPa* 11.321  kN 28° 

ft = 0.05 MPa, fc → ∞ 13.688 kN 31° 

ft = 0, fc = 2.2 MPa* 3.3081 kN  42° 

ft = 0, fc → ∞ 3.4804 kN 42° 
 

As an example, in Figure 5b the thrust line related to one of the four half-arches 
composing the cloister vault is shown. This line corresponds to the stability area 
plotted in Figure 3b (t = 0.12 m, R = 1 m, 𝛾 = 20 kN/m3, ft = 0, fc → ∞), obtained at 
the collapse load, 𝜆 ൌ 𝜆௟௜௠ ൌ 3.4804 kN. The position of the hinges, i.e., the joints 
where the bending moment attains its limit value, identifies a kinematically 
admissible collapse mechanism both for the half-arch and for the entire cloister 
vault.  
 

In [6] the kinematic method is applied by assuming ft = 0.05 MPa, fc 
→ ∞; moreover, different values of the tensile strength along the meridian/diagonal 
arches, 𝑓௧ௗ, are assumed. The results show that the collapse load is strongly affected 
by the strength along the meridian/diagonal arches. The best fitting with the 
experimental results is obtained by setting 𝑓௧ௗ ൌ 0.08 MPa for the dome (𝜆௟௜௠ ൌ
52.1458 kN) and 𝑓௧ௗ ൌ 0.025 MPa for the cloister vault (𝜆௟௜௠ ൌ 30.6504 kN ). 

The results obtained through the two approaches by assuming the strength values 
compatible with both methods (𝑓௧ௗ ൌ 0, ft = 0, fc → ∞ and 𝑓௧ௗ ൌ 0, ft = 0.05 MPa, fc 
→ ∞) are in good agreement. 
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5  Conclusions and Contributions 
 

Assessing the load bearing capacity of masonry domes and vaults subjected to 
gravity-induced loads is not an easy task. This contribution aims at developing two 
(semi)analytical methods based either on the static or the kinematic theorem of limit 
analysis, which provide safe and unsafe approximations of the collapse load by 
enriching Heyman’s hypotheses. In the static approach a limited tensile and 
compressive strength along the joints can be taken into account, whereas in the 
kinematic approach the tensile strength both along the joints and along the 
meridian/diagonal arches can be incorporated.  
 

 The (semi)analytical solutions are of technical interest since the load bearing 
capacity of the considered masonry structures can be evaluated in closed form, 
without resorting to numerical methods. Moreover, both methods can be easily 
adapted to different geometries and load conditions. 
 

 In the continuation of the research, the proposed methods will be applied to some 
interesting case studies belonging to the architectural heritage. As an example, the 
dome of the Church of Anime Sante in L’Aquila (Italy) and the dome of Escuelas 
Pías in Valencia (Spain) both match the scheme shown in Figures 1b,d including an 
oculus. Another interesting case study that can be analysed by the proposed 
approach is represented by the Global Vipassana Pagoda, the world’s largest span 
stone masonry dome (Mumbai, India), consisting in a hemispherical dome with a 
small oculus and a conical lantern. 
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