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Abstract

Constitutive models are a key ingredient of finite element procedures. Robust and ef-
ficient finite element solutions requiere sound physically motivated multiaxial models
that, at the same time, are simple, efficient and as general as possible. Furthermore,
material parameters should be reduced to a minimum and, if possible, either obtained
directly from experimental measurements or obtained through automatic procedures.
In this paper we overview recent advances in large strain constitutive models follow-
ing these principles. In the first part, we address the main ideas behind a new class of
hyperelastic models which parameters can be automatically obtained from experimen-
tal measurements. In the second part we address a new class of constitutive models
for multiaxial, anisotropic viscoelasticity and plasticity, which is based on the elastic
corrector rate concept, and whose algorithms result in plain backward-Euler updates.
These formulations also bring an identical framework in both continuum and crystal
plasticity.
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1 Introduction

The modeling of deformable components using finite elements need reliable finite
element formulations and sound, efficient and robust constitutive models and algo-
rithms [1]. Bathe et al. [2] established the equivalency between the widely used
large strain Updated Lagrangean and Total Lagrangean finite element approaches, and
constitutive models have been mainly confined to material subroutines which relate
stresses to the deformation gradient; hyperelasticity was already therein considered.
But despite hyperelasticity had been around for decades in physics, chemistry and ap-
plied mathematics to model ruber-like materials (see e.g. [3,4] and therein references),
it was probably Simo and coworkers who made the important leap of promoting hy-
perelasticity not just as a material modeling approach for soft materials, but as a re-
quirement also in metals to avoid spurious disipation both at the constitutive and the
algorithmic levels [5], avoiding ad-hoc “objective” integration rules and prescribing
a physically correct behaviour by construction. Through rigorous treatments, Simo
and coworkers also derived the algorithmically consistent tangent in elastoplasticity
and the large strain formulations based on the Kroner-Lee multiplicative decompo-
sition. This energy-based combination, avoiding theoretical shorcuts as hypoelastic
rate-form evolution equations or plastic “metrics”, resulted not only in sound theories,
but also in remarkably simpler algorithmic treatments. This presentation is framed
in these ideas: using sound theoretical modeling to arrive at simpler computational
procedures. We present the recent advances made in our group in the last years in
constitutive modeling.

In the first part we shortly overview a new approach to model soft materials. Our
work is based on the seminal ideas from Sussman and Bathe [6] of using spline-based
interpolation to yield a non-parametric approach to hyperelasticity. We have extended
this approach to model soft materials [7—12] both from a phenomenological point of
view and from a micromechanical point of view. We have determined the spline coef-
ficients both from homogeneous tests on the material and from finite element results
on nonhomogeneous tests, in both cases just solving a linear system of equations.
With this procedure we have also been able to obtain important physical insight in the
theory of polymers [13, 14].

In the second part, we introduce the basic ideas and advantages of a new class
of large strain formulations for plasticity and viscoelasticity based on the concept of
elastic corrector rates [15—18]. This new approach overcomes many of the problems
and limitations encountered in more classical multiplicative large strain plasticity for-
mulations. For instance, the new approach is (1) valid for arbitrarily large elastic or
plastic deformations, (2) has uncoupled plastic spin, (3) the Madel tensor is irrele-
vant also in anisotropic formulations and (4) it is integrated using a simplest plain
backward-Euler integration rule, preserving the isochoric behavior by construction. It
also allows for strain-level dependent viscoelasticity without the use of Prony series or
strain-dependent parameters [19]. This framework has been extended to model non-
linear kinematic hardening at large strains using only the Lee decomposition [20] and
to model crystal plasticity [21].



2 A new succesful approach to hyperelasticity

In this section we overview the novel approach to hyperelassticity using spline inter-
polations, and how this data-driven method brought a new non-affine micro-macro
connection which solves many of the interrogants in the modeling of elastomers.

2.1 Spline-based hyperelasticity

Hyperelasticity is true path-independent, conservative elasticity. An elastic model
has to fulfill Bernstein’s integrability conditions to avoid spurious energy disipation
during closed cycles [22,23]. This is guaranteed through the assumption of an energy
potential (the hyperelastic model), whose strain derivatives are the stresses. The main
drawback is that stored energies cannot be measured, so their shapes are “guessed”, as
a function of some material parameters that are adjusted fitting stress-strain data for
some loading protocols. Well known hyperelastic models are the Ogden model, the
Arruda-Boyce model, the Mooney-Rivlin model, etc. [1,4].

Sussman and Bathe [6] brought a new paradigm to hyperelasticity using splines
to describe the stored energy function. Splines are series of local cubic polynomia
which coefficients (the “parameters™) in the stored energy can be easily manipulated
and brought to the stress-strain curve. Then, they can be obtained automatically sim-
ply solving the linear system of equations which results from the minimization of the
squared error. They are considered “non-parametric” because these coefficients are
never “seen” by the user. In some sense, the method is similar to Neural Networks (in
being non-parametric), but the latter (also used in hyperelasticity) do not preserve any
physical insight. It is also similar to finite elements in the sense that local interpola-
tions are employed and the nodal values are obtained from equilibrium.

The simplest case is that of isotropic incompressible materials based on the Valanis-
Landel decomposition. In this case, if we use logarithmic strains F; = In \;, where \;
are the stretches, the stored energy function W may be written as

\I/(El, E27 Eg) = W(El) + W(Eg) + CL)(E3) (1)

We can posit that each Valanis-Landel term (indeed its derivative) can be written in
terms of spline interpolation functions N;(£(E)) as

W (E) = Z Ni(£(E))a; )

where w; = W'(E;) — w'(0) are the “nodal” values (vertices in B-splines) to be de-
termined, {(F) is the normalized domain variable, and nv is thenumber of func-
tions/vertices used.

In the Valanis-Landel case, the equilibrium equation for a uniaxial test is
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where the second expression is a compact notation. Eq. (3) can be evaluated at every
experimental value F;, so using the interpolation Eq. (2), a system of equations may
be formed, from which the nodal values w; may be obtained. In practice, less vertices
than experimental data are used, so a minimizing solution for the squared error is
pursued, using the Moore-Penrose Pseudoinverse.

Whereas initial works used cubic splines, penalized B-splines are a much better
choice because of two reasons: convexity of the energy can be guaranteed by guaran-
teeing the convexity of the hull of the B-spline vertices, and smoothing penalization is
straightforward [24]

Whereas the previous explanation is for isotropic materials, the approach is equally
valid for anisotropic materials. The main changes are the assumption on the main in-
variants to be used and the assumption of the strain energy decomposition. Some cases
may even be strikingly simple. If we assume that the stored energy may be written as
(an assumption common to many models, for example the Holzapfel-Gasser-Ogden
model)

U = iso(11) + (1) +(Ig) with [} = trace(C),[; =C :a; @ a;, i = 4,6 (4)

where a; are the fiber directions, C' is the right Cauchy-Green deformation tensor and
I; the related invariants, then the stored energy solution is explicit from a tensile test
data [25]:
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Here [ is the angle between fibers (3/2 is the angle with the loading direction),
I, = I, = Is = A2 cos? B + A2 sin? 3 is the anisotropic invariant, \,, \; are the lon-
gitudinal and transverse stretches in the uniaxial test, and o, are the stresses. Hence,
remarkably, with Egs. (5), (6), we do not need to prescribe the shape or “model” of
the stored energy, (less determine any material parameter as in the HGO model). We
just interpolate nodal values!

One of the most important works in this line is the determination of the behavior
of a representative elastomer chain from tests on the continuum. In this case, we
assume that the polymer is made of macromolecules randomly oriented in space. Their
entropy changes with stretch. We assume that the stored energy of the solid can be
computed from integration in all directions of space (in the sphere 5); that is:
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We can use B-spline interpolations to describe the derivative of the chain function
Pch = d\pch(Ach)/dAch:

Pch = ZNm(/\ch(/\h/\27A37rch))pchm (9)
m=1

where nv is the number of the B-spline vertices, 7., is the direction of the specific
chain and A, (A1, A2, A3, 7¢,) is a function of the continuum stretches and the chain
direction. Inserting this interpolation into Eq. (8), after some algebra (see [14]), we
arrive to a linear system of equations, which, using stress-strain data of any test, gives
the vertices of the spline representing the chain behavior. With that chain behavior,
using again Eq. (8), we can obtain the stress under any loading condition.

This model has been extremely succesful. It has been the first model capable of
obtaining accurately all the curves (both axes) of the true biaxial Kawabata tests using
only data from a single test. The results can be seen in Figure 1; see [14].

The approach can be extended to cross scales, so the representative polymer chain
behavior may be obtained directly from Digital Image Correlation on non-homogeneous
tests, again solving a linear system of equations. Figure 2 shows the results of simu-
lations of a perforated plate of isoprene rubber vulcanizate when the macromolecule
entropy changes are obtained directly from deformations on a nonhomogeneous test
and the force applied to the specimen. Details can be found in [27].

2.2 Non-affine microstrech deformations

Interestingly, one of the main contradictions in the classical models of elastomers is
the need for more than one test curve to characterize the material [28,29]. Note that in
the linear elastic case, an isotropic incompressible material has only one independent
material constant, the shear modulus, so one expects that the nonlinear case should
be fully characterized by a single stress-strain curve, for example, from a uniaxial
test. Equation (8) may seem an obvious exercise of the chain rule, but it is extremely
important. The dependency of the microstretch A.; on the principal stretches A; is
the micro-macro connection, and this relation is crucial. Thanks to the new approach,
we have demonstrated in [13] that the classical orientational affine connection given
by \§, = C : 7., ® 7, is not capable of reproducing adequately the elastomer
behavior (e.g. Kawabata tests) regardless of any posible chain function being used.
Moreover, we have also demonstrated that the micro-macro connection A\, = U :
T, @ T brings accurate results and is the one consistent with the statistical theory of
polymers. In fact, this new micro-macro orientationally non-affine connection solves
many of the inconsistencies highlighted by researchers for decades, for example: “In
contrast to the original success of the statistical theory, the failure to secure any very
significant understanding of the relatively rather small (?) deviations from the theory,
despite repeated attempts over a period of 30 years, is disappointing”, Treloar [3] in
1975, regarding the unexplained slope in Mooney plots. Other statements are: It is
“somewhat surprising the lack of success of the full network model” (e.g. Eq. (8));
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Predictions of the Kawabata et al biaxial experiments [26] using the pro-
posed spline-based model. (a), (b) Longitudinal nominal stresses P as a
function of the longitudinal stretch A\, for different fixed values of the trans-
verse stretch \;. (a) shows the large stretches range and (b) shows the mod-
erate stretches range. (c), (d) Transverse nominal stresses P; as a function of
the longitudinal stretch )\, for different fixed values of the transverse stretch
A1. (c) shows the large stretches range and (d) shows the moderate stretches
range. Reproduced from [14], under permision.
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Figure 2: Comparison of the von Mises stress of a simulation of a plate with a hole
made of Treloar’s rubber, when (A) the chain behavior has been obtained
from homogeneous tests and (B) when they have been obtained directly
from nonhomogeneous tests (in this case Digital Image Correlation mea-
surements have been simulated through a virtual test). Reproduced from
[27].

“It is a well-known fact that the [chain stretch] affinity assumption yields a model
response that is not in agreement with experimental data”, Miehe [30] regarding the
need for using his proposal of the type < A >,= [[4()5,)9dS/S]*/? (note that this
non-affinity relates to the stretch amount, not to the orientation of the chains, which
remain affine); “It is now well-established that a unique experiment is not sufficient to
characterize a [isotropic and incompressible] rubber-like material even assuming it is
elastic”, [31].

With the orientationally non-affine micro-macro connection, the slope in the Mooney
plots is correctly predicted, the full network model is accurate, the chain stretch needs
not to be modified, and a unique (any) stress-strain curve is sufficient to fully charac-
terize the behavior of the polymer. Indeed, just three parameters obtained from that
test are sufficient [32].

3 Plasticity and viscoelasticity based on the notion of
an elastic corrector rate

Classical large strain plasticity and viscoelasticity frameworks, based on objective
stress measures and rate equations have been surpassed by schemes based on the mul-
tiplicative decomposition of the deformation gradient, the Lee decomposition for plas-
ticity and the Sidoroff decomposition for viscoelasticity:

X = X X, for plasticity, or X = X X, for viscoelasticity (10)

X is the deformation gradient [1] and subscripts stand for elastic, plastic or viscous
contributions. This decomposition, motivated in crystal plasticity, allowed for the use
of hyperelastic stored energy functions ¥ (X ), and hence, simplified integration algo-



rithms avoiding objectivity issues. However, stress integration becomes conceptually
more complex [5],

One of the main difficulties in these formulations has been the establishment of the
plastic flow evolution equation. First algorithmic formulations lacked preservation of
the isochoric nature of the plastic flow [5]. While this was soon solved, the algo-
rithms remained relatively complex. The seminal works of Weber and Anand [33]
and Eterovi¢ and Bathe [34] brought simplicity by the use of logarithmic strains and
the so-called exponential formula. This type of formulation has been advocated later
by many authors, even though some limitations remained, as the use of “moderately
large” elastic strains and linear elastic relationships. Anisotropy had also many issues,
due to the lack of commutation between the stress and strain tensors, bringing the
non-symmetric Mandel stress tensor (of elusive interpretation). The key point to these
formulations has been the use of the plastic flow evolution equation, namely

L,=X,X;' (n

where L, is the plastic velocity gradient. However, this “phenomenological” proposal,
motivated in the classical small strain setting, is the source of both the theoretical and
algorithm problems. A rigurous approach establishes the logarithmic elastic strains E.
as a function of the total deformation gradient X and the plastic deformation gradient
X, as E.(X, X,), so its rate is split into two contributions or partial derivatives

) . 0E,
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The latter identity renames, for convenience, the contributions as “trial” and “correc-
tor” contributions, because of obvious parallelism with the predictor-corrector algorit-
mic concepts, but note that here we deal with continuum concepts, partial derivatives,
not algorithmic concepts. Then, it can be shown that the plastic disipation equation
and the evolution equations may be fully written in terms of the logarithmic elastic
strain corrector rates, and of the work-conjugate generalized Kirchhoff stresses 1" i.e.

DP = —T:“E, >0 with “E, = —4V¢/k (13)

where 7, is the effective plastic deformation rate, & is the equivalent yield stress and ¢
is the flow potential (e.g. the derivative of the yield surface respect to the stresses).

Thanks to this approach, when using also logarithmic strains in the intermediate
configuration, the stress integration algorithm is a simple backward-Euler algorithm,
and no restriction on the hyperelastic relations or the magnitude of the elastic strains is
needed. Anisotropy is incorporated in a straightforward manner. Indeed, the motiva-
tion and first implementation was using Hill plasticity [16]. Furthermore, the Mandel
stress plays no role in the formulation and no assumption regarding the plastic spin is
needed (because it is uncoupled from the symmetric flow).

Using Prandtl elements in series, this type of formulation has been extended to
model nonlinear kinematic hardening at large strains using only Lee multiplicative



decompositions (avoiding Lion-type decompositons), and avoiding spurious energy
disipation due to backstress integration [20]. Indeed, even the concept of backstress
is inexistent in the new formulation. In Fig. 3 we show the simulation of a cyclic
bending test on a plate using rollers. It is seen in the figure that nonlinear kinematic
hardening is correctly reproduced (including Masing rules), and no spurious disipation
is apparent. The formulation is robust, capable of simulating the strong changes due
to contact conditions.

The framework based on elastic corrector rates has also been extented to crystal
plasticity, where all the attractive properties are preserved, and a complete parallelism
between continuum and crystal plasticity formulations is obtained. Among the at-
tractive properties is the use of any hyperelastic function, the absence of the Man-
del stress tensor, the plain backward-Euler integration rule, and the fulfillment of the
weak-invariance properties [21]. Interestingly, using equivalent material parameters,
the computational results are in close agreement with those from the classical (more
complex) Kalidindi-Bronkhorst-Anand formulation. Figure 4 shows the simulation of
a tensile test on a polycrystal cubic sample. Fig. 4b gives the initial crystallographic
texture pole plots for directions (111) and (100) and Fig. 4c shows the final texture
plots for the same directions. It can be shown that these results are visually almost in-
distinguisable from those obtained using the classical formulation; see details in [21].

4 Concluding remarks

The objective of this presentation has been to give an overview of new approaches
in constitutive modeling which bring simple computational methods from minimal
assumptions.

Spline-based hyperelasticity is a non-parametric data-driven method that avoids
the assumption of the form of the stored energy. The only assumption is about the
structure of the model, as invariants, and how the stored energy is obtained from partial
energy contributions. This approach has brought a new micro-macro conection for the
chain stretch that results in very accurate predictions for elastomers using a single test
curve to characterize them. Furthermore, it has solved many crucial issues regarding
polymer modeling that remained unsolved for decades.

In multiplicative plasticity, the formulation of the plastic flow in terms of the elas-
tic strain corrector rate (a continuum concept) is not only mathematically and physi-
cally sound (e.g. fulfilling the weak-invariance property), but also results in simplest
backward-Euler algorithms. Furthermore, the approach, almost unchanged, has been
easily extended to model nonlinear kinematic hardening (without the backstress con-
cept) and crystal plasticity (using any hyperelastic stored energy function and without
the apprereance of the Mandel stress tensor).

Research is still needed to extend these ideas for different classes of materials, like
porous metals or many types of soft biological tissues. Research is also ongoing to ex-
tend these types of formulations to growth and remodeling, as well as viscoplasticity.
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