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Abstract 
 

For a long period, phyllotaxis (the arrangement of leaves on a plant stem) has been 
observed as an interesting morphological property of various plants, and the 
phyllotactic spirals form a distinctive class of patterns in nature. These days, the 
unique patterns governed by the Fibonacci sequence, or the golden ratio in a deeper 
sense, have moved beyond the botanical system and came to be universal, occurring 
in architectural and structural design. In this work, we develop a design approach for 
curvilinear stiffening ribs which follow the Fibonacci spiral pattern. The parametric 
model of the designed ribs is built according to two parameters, one discrete and 
another continuous. Parametric studies on the two variables are performed to assess 
the potential mechanical advantages of the Fibonacci spiral pattern in stiffening 
structures. The deformation-, vibration- and buckling-resisting capacities are 
investigated for thin-walled stiffening plates with a central cut-out. Moreover, an 
attempt is devoted to clarifying the rationality of curvilinear employment in other 
designs. Lastly, we demonstrate that the developed protocol does not limit itself to 
planar structures with cut-outs, and it is easy to be extended to stiffening ribs on 
curved surfaces, where the gain in mechanical property is observed to be even more 
visible and pronounced. 
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1  Introduction 
 

In recent decades, rib-reinforced shell structures have found attractive applications in 
aerospace engineering, given their unique light-weight nature as well as the 
outstanding load-bearing capacity[1]. On the other side, stiffened structures were 
reported to feature satisfactory dynamic properties compared to their thin-walled 
counterparts[2].Hence, the layout and orientation design of stiffeners has long been a 
research interest in the realm of light-weight design of high-performance components, 
and fruitful results have been extensively reported[3]. 
 

We intend to develop in the present work a novel parametric design approach for 
the stiffened thin-walled structures with im-proved mechanical properties. To 
alleviate the tedious reconstruction after traditional topology optimization, the 
proposed parametric approach should enable the stiffener layout to be optimized with 
a limited number of variables and guarantee a ready-to-fabricate design. Specifically, 
the stiffeners are meticulously designed to follow the Fibonacci spiral pattern, 
reminiscent of the biological settings frequently encountered in nature. For example, 
seeds of sunflowers, branching in trees, and arrangement of leaves on a stem all take 
similar spiral patterns in clockwise and counter-clockwise directions, the spiral 
numbers of which are consecutive in the Fibonacci series, Fig.1a[4].  

 

In fact, the Fibonacci spirals and the Fibonacci numbers have aroused scientific 
urges since antiquity. However, still today, it is non-trivial to answer the question 
”How is the Fibonacci spiral pattern formed?”, and the fundamental rules seem to re-
main unrevealed. Notwithstanding that, we deem that biochemistry, mechanics, and 
even physics shall all play a role in generating the unique patterns[5,6]. Among these, 
the mechanical aspects were convinced to play a significant role in pattern 
formation[7]. Continuous efforts have been devoted for decades[8,9]. 

 
On the basis of the reviewed development, it is remarked that the underlying 

mechanisms of the Fibonacci spiral pattern in nature still remain elusive, given the 
coupled effect of energy, nutrition transportation, and mechanics. Albeit that, we 
would like to formulate another issue of the problem:” Can the Fibonacci spiral pattern 
be employed in stiffening ribs design and to what extent will it improve the resulting 
mechanical properties of the designed structure?” With this in mind, we explore in 
this work the possibility of adopting the Fibonacci spiral pattern in stiffening 
structures, and to examine carefully potential improvements in load-bearing and other 
mechanical performances. 

 
2  Methods 
 

As widely recognized, the mathematical basis for the Fibonacci/phyllotactic spiral is 
directly related to the Fibonacci sequence and to the golden angle  . Both 
mathematicians and biologists have proven that this angle is highly sensitive to the 
separation of individual primordial or to the packing density of florets, and it measures 

approximately 137.5 , or, (3 5)  radians more precisely. To generate the 
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Fibonacci spirals, a series of N key points are required. Using a mathematically 
idealized form of phyllotaxis, the coordinates of the key points lying on the Fibonacci 
spiral can be expressed in relatively simple circular functions as: 
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                (1) 

where i  is the key point index. ir , the radius of the current point to the center of 

growth, is generally defined as ir i  according to the formulation devised by 

Helmut Vogel (1979). Notice that, for the sake of a more flexible design, we suppose 
a linear expansion pattern of the key points/florets. A constant growth factor 

r const  is adopted in the current work, giving 1i ir r r  . Fig. 2 schematically 

illustrates the generation of 50 key points that lie on the Fibonacci spirals. 
 

 
Figure 1: Fibonacci spiral patterns in nature and architectural design: (a) clockwise 
and anti-clockwise spirals in plants such like Aloe polyphylla and sunflower, (b) 

Fibonacci pattern seen in the Core's ceiling. 
 

 

Figure 2: Schematics of the generation of 50 ’florets’ that lie on the Fibonacci 
spirals. The involved parameters are r1 = 5 and r  = 2. 

 
 Upon the generation of Fibonacci spirals, geometric models of stiffening ribs can 
then be readily achieved in commercial CAD software such as Siemens NX 
Unigraphics. The most popular way is to assign a rectangular cross-section to the 
frame lines. Either, other user-defined profiles can be realized via plug-in 
development. A series of Boolean operations or confine transformations can as well 
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be employed to generate more complex engineering parts. Fig. 3 illustrates the 
procedures to stiffen a perforated rectangular plate with ribs of Fibonacci spiral 
patterns. 

 
Figure 3: Generation of a thin-walled plate with a circular cut-out, stiffened by 

Fibonacci spiral pattern ribs. 
 

By varying the number of spiral lines, four stiffening strategies are pro-posed and 
are demonstrated in Fig. 4a. As can be observed, the pair of parastichy is one of the 
governing parameters that may alter the topological layout of the stiffeners. 
Meanwhile, due to the integral nature of this pair, the topological evolution of 
stiffeners is discontinuous. Further to this comparison, the morphology evolution of 
the stiffening ribs according to the growth factor r  is also studied. Fig. 4b includes 
another four stiffening plates with varying r . It is pointed out that, different from 
the pair of parastichy, r  is continuous and the ribs evolve in a smoother manner. As 
can be observed from the figure, r  is closely correlated with an amplification factor 
of the structure. To be specific, increasing the growth factor is almost equivalent to 
applying a ”zoom-in” operation on the ribs. Furthermore, we emphasize that the 
growth factor can alter the topology of the stiffener as well, since the magnified 
Fibonacci spirals are ultimately trimmed by the bounded structural boundaries, and 
topological change is in fact allowed. 

 

 
Figure 4: different reinforced plates with Fibonacci spiral ribs defined by: (a)-(d) 
diverse pairs of parastichy (with fixed growth factor δr = 1.0) and (e)-(h) diverse 

growth factorsδr (with fixed pair of parastichy (c, ac) = (13, 21)) 
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3  Results 
 

3.1 Deformation-resisting capacity analysis 
The introduction of ribs encourages improved performances of thin-walled structures 
from diverse views, among which are the load-bearing, vibration-and buckling-
resisting capacities. With the aim of revealing the potential tunability of Fibonacci 
spiral pattern ribs in mechanical performances, weexplore in this section the 
performance improvement of stiffened rectangularplates in various manners. For the 
generation of Fibonacci pattern ribs,four pairs of parasiticy are selected: (5,8), (8,13), 
(13,21), and (21,34). Thegrowth factor is varied from 0.3 to 2.1, with a step length of 
0.2, providinga total of 40 stiffening strategies. For comparison reasons, we also 
includein the model set square- and X-grid counterparts, each with two different 
densities of stiffeners, as illustrated in Fig. 5.  
 

 
Figure 5: Stiffening patterns considered in the current work: (a) one of the 40  

 
Fibonacci spiral patterns, with the governing parameters for the other models 

presented in Tab.1, (b) the two square-grid patterns, and (c) the two X-grid patterns. 
 

 
Figure 6: Comparison of the strain energy measured on plates stiffened according to 
the Fibonacci spiral patterns. The topology of the stiffening ribs is controlled by the 

pairs of parasiticy (c, ac) as well as the continuously evolving growth factor r  
from 0.3 to2.1. The inset shows the displacement field of the design with a 

satisfactory stiffness, (c, ac) = (13, 21) and r  = 0.5. 
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We investigate in the first place the capability of different stiffening pat-terns in 
improving the overall stiffness of the plate. For such purpose, a dis-tributed load of 
100N is applied along the normal direction of the stiffened panels, the outer boundary 
of which is fully clamped. Such load condition mimics that of a pressure vessel and is 
of practical sense. We have chosen structural compliance (i.e., the strain energy) as a 
characteristic measure of the stiffness of stiffened parts. Unlike the maximum 
displacement which be-longs to a localized description, the strain energy better 
indicates the overall deformation-resisting performance of parts under loading. Fig. 6 
plots the strain energy stored on the plate as a function of the growth factor of the 
Fibonacci spiral pattern.  

 

 
 

Table 1: Compliance of stiffened panels under three loading conditions. The values 
listed for the Fibonacci pattern stiffened plates correspond to the pattern in the inset 

of Fig.8.Values in the table are in [mJ]. 
 

To better evaluate the stiffening effect brought about by the Fibonacci spiral pattern 
ribs, we further calculate the stain energy of reinforced plates by square- and X-grid 
ribs. For the sake of completeness, the capabilities in resisting shear and torsion load 
have also been investigated for the three stiffening patterns. A torque of 10kN ꞏ m has 
been applied to the central cut-out with the four edges fully clamped. As to the shear 
load, the bottom edge is fixed while a shear force of 1kN is applied to the upper edge. 
Notice that, structural compliance has been adopted as the mechanical figure of merit 
for a uniform characterization of stiffness, and that corresponds to the compression 
loading has been included as well in Tab.1. Particularly, for the Fibonacci spiral 
pattern, the strain energy values included for comparison correspond to that of the 
pattern as shown in the inset of Fig.6. 

 
As can be concluded, the Fibonacci spiral pattern ribs render the highest stiffness 

to the panel under a distributed compression, with the strain energy being half of its 
grid-stiffened counterparts. Also, a slightly better shear-resisting performance is 
credited to the Fibonacci-pattern panels, given the limited discrepancy in the values. 
Furthermore, the Fibonacci pattern stiffened panel is observed to store the least strain 
energy when the same torque is applied to the central cut-out, implying 
simultaneously the best torsion-resisting performance. In all, the Fibonacci spiral 
stiffening pattern is noticed to lead to an excellent deformation-resisting performance 
under the three loading cases, allowing it to be served as a feasible alternative in the 
reinforcement of thin-walled engineering parts. We should emphasize that the above 
conclusion may be slightly altered by the boundary conditions as well as the 
dimensions of the structure.  
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3.2 Buckling-resisting capacity analysis 
 
We then investigate the buckling-resisting capacities of all the 40 Fibonacci patterns 
and 4 grid pattern stiffened plates. The 4 geometric models of grid-stiffened panels 
have been previously demonstrated in Fig.7, while that of the Fibonacci pattern 
stiffened panels have been omitted for clarity’s sake. We should emphasize again that 
the same structural weight is maintained for all the cases with the aim of a fair 
comparison, and this is realized by controlling the width of the ribs in respective cases.  

 
Three load conditions are considered: distributed vertical load, concentrated load 

locally applied to the central cut-out, and torsion load acting on the central cut-out. 
For clarity’s sake, these three load conditions are denoted by ”Load A”, ”Load B”, 
and ”Load C”, respectively. Readers are invited to note that, the three loading 
conditions have been schematically demonstrated in Fig.7 accompanied by three 
different patterning strategies. We emphasize in the meantime that, for each individual 
structure, the buckling resisting capacity has been analyzed with all the above three 
loading cases. 

 
Figure 7: Loading conditions for comparison of buckling-resisting capacities of 

various stiffened plates: (a) vertical distributed load, (b) concentrated load, and (c) 
torsion load at the central cut-out. 

 
In this subsection, linear buckling analysis is conducted. For simplicity, the unit 

load is generally applied on the part such that the buckling-load factors (BLF) provide 
a direct estimation of the buckling-load magnitude. Notice that Load A and B are in 
N while Load C is in N ꞏ m. Tab. 2 summarizes the critical buckling loads of various 
panels under different load conditions. It is pointed out that the values listed for the 
Fibonacci pattern stiffened plates are the biggest ones chosen among the 40 models, 
implying the best buckling-resisting performance within the searched design domain. 

 
As can be concluded from the results, the Fibonacci pattern outperforms the other 

two types of stiffening ribs when a unit concentrated force is applied at the central 
cut-out (by adopting the multi-point constraint, MPC), with an improvement of 
buckling-resisting capacity by 8% and 14%, respectively. If a vertically distributed 
load is applied at the two far ends of the plate, the Fibonacci pattern ribs demonstrate 
as well a satisfactory performance with the critical buckling load being 509KN. 
However, in such circumstances, the X-grid ribs provide the least support to resist 
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buckling deformation. This is attributed to the fact that more material is desired to be 
placed along the load-carrying path in buckling-resisting design. As for Load C, an 
outperformance is marked for the Fibonacci spiral pattern ribs than the square-grid 
ribs, improving the critical buckling load from 351 to 391 KN, and the X-grid pattern 
shows the best buckling-resisting performance. This is reasonable since the cross-
cutting is favorable for torsion load and it transfers load more directly to the fixed 
boundary. 

 

 
Table 2: Critical buckling loads of various plates stiffened by different strategies. 

Load A refers to the vertically distributed load, Load B, a central concentrated load, 
and Load C, a torsion moment (units in N and N ꞏ m). 

 
We notice as well that the critical buckling loads are sensitive to patterns of 

stiffening ribs. Overall, the X-grid ribs are more suitable for torsion loads, while the 
square-grid pattern is preferable in the other two loading cases. Notice as well that the 
density of X-grid ribs seems to less affect the buckling resisting capacity, since the 
critical loads differ only within 5% for sparsely and densely distributed ribs. However, 
adjusting the density of square-grid ribs can change significantly the buckling-
resisting capacity. 

 
It is observed that, for all three load conditions, the best topology of the stiffening 

ribs is generated on top of 21 clockwise and 34 anti-clockwise Fibonacci spirals, Fig. 
8. However, the growth factors are slightly different, being 0.3, 1.1, and 0.5 
respectively for the three structures. Furthermore, we notice that the first eigenmodes 
are not necessarily symmetry. This is due to the asymmetry nature of the Fibonacci 
spiral pattern. 

 
 

Figure 8: First eigenmodes of Fibonacci-pattern stiffened plates demonstrating the 
best buckling resisting performance under various loading conditions: (a) δr = 0.3 

for Load A, (b) δr = 1.1 for Load B, and (c) δr = 0.5 for Load C. 
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4  Conclusions and Contributions 
 

In this work, we have revisited the Fibonacci spiral patterns that are frequently 
observed in nature and explored thoroughly their possible integration into the design 
of stiffening ribs on thin-walled structures. The concise modelling of Fibonacci 
pattern ribs using only two intrinsic parameters has been demonstrated. A series of 
finite element simulations, covering quasi-static, modal, linear and nonlinear buckling 
analysis, has revealed the wide tunability of the mechanical performances of the 
design. The advantage of the Fibonacci spiral pattern reinforced 3D reflector structure 
has been demonstrated both numerically and experimentally. As part of broader 
outreach efforts, we also demonstrated that the curvilinear ribs may not necessarily be 
advantageous. Rather, straight ribs can be more helpful where the stress status is 
simple and a more direct load-carrying path is desired. In other cases, curvilinear ribs 
may render better mechanical performances by aligning themselves with the load-
carry path under a complex load condition. Anyhow, the proposed Fibonacci spiral 
pattern is promising in finding its engineering applications given its diversity in 
generating both curvilinear and quasi-straight ribs. 
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