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Abstract 
 

Bayesian updating framework is regarded as a promising approach for probabilistic 
calibration and uncertainty quantification, and the main obstacle for practical 
engineering problems is the high computational cost, especially for time-consuming 
models. The attractive point of traditional Bayesian updating with structural reliability 
methods (BUS) is to reformulate Bayesian updating into a structural reliability 
problem by constructing the limit state function with the likelihood and an auxiliary 
random variable. This paper proposes a step-wise Bayesian updating approach, by 
developing a varying observation domain-based strategy to reduce the dimensionality 
and nonlinearity of the constructed limit state function. In our work, the reliability 
problem is decomposed into a series of sub-problems by attributing random samples 
of the auxiliary random variable to each sub-problem. Thereafter, the exponential 
relation in each limit state function degenerates into squared linear additive type, so 
as to comprehensively reduce the nonlinearity. To overcome the inefficiency caused 
by rare event, this paper further develops an active learning procedure based on 
Gaussian process regression (GPR) to approximate a series of induced limit states as 
well as the acceptance rates. The main advantage of this procedure is of sharing the 
common performance function evaluations which can largely reduce the 
computational cost.       
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1  Introduction 
 

With the development of sensing technologies, various sources of data in modern 
mechanical systems become available. Model updating is an essential step to 
assimilate the experimental data into computational models so as to provide updated 
and more accurate model parameters for structure and infrastructure health 
monitoring. Bayesian updating framework is regarded as a promising approach for 
probabilistic calibration and uncertainty quantification, and the main obstacle for 
practical engineering problems is the high computational cost, especially for time-
consuming models. To tackle this problem, many approaches are proposed, such as 
Markov Chain Monte Carlo-based method, and Bayesian updating with structural 
reliability methods (BUS), many of which are restricted to small-scale numerical 
examples. This paper aims at extending the application scope of Bayesian updating 
by modifying the BUS method. 
 

Many updating approaches are proposed, such as Markov Chain Monte Carlo-
based method, and Bayesian updating with structural reliability methods (BUS) [1], 
many of which are restricted to small-scale numerical examples [2]. This paper aims 
at extending the application scope of Bayesian updating by modifying the BUS 
method. The attractive point of traditional BUS methods is to reformulate Bayesian 
updating into a structural reliability problem by constructing the limit state function 
with the likelihood and an auxiliary random variable. This reformulation makes it 
possible to insert all the most advanced strategies in structural reliability analysis into 
Bayesian updating framework to achieve higher accuracy and efficiency. However, 
the constructed reliability problem also introduces new problems. One significant 
problem is involving a highly nonlinear limit state with rare event especially when the 
number of observations increases [3].  

 
The attractive point of traditional BUS methods is to reformulate Bayesian 

updating into a structural reliability problem by constructing the limit state function 
with the likelihood and an auxiliary random variable. This reformulation makes it 
possible to insert all the most advanced strategies in structural reliability analysis into 
Bayesian updating framework to achieve higher accuracy and efficiency. However, 
the constructed reliability problem also introduces new problems. One significant 
problems is involving a highly nonlinear limit state with rare event especially when 
the number of observations increases. This paper firstly proposes the varying 
observation domain-based strategy to reduce the dimensionality and nonlinearity of 
the limit state. In our work, the reliability problem is decomposed into a series of sub-
problems by attributing random samples of the auxiliary random variable to each sub-
problem. Thereafter, the exponential relation in each limit state function degenerates 
into squared linear additive type, so as to comprehensively reduce the nonlinearity. 

    
Motivated by the group of most advanced structural reliability methods, this paper 

develops active learning procedure based on Gaussian process regression (GPR) to 
approximate a series of varying observation boundaries. Thereafter, the exponential 
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relation in each limit state function degenerates into squared linear additive type, so 
as to comprehensively reduce the nonlinearity. 

 
 

2  Problem statement of Bayesian updating 
 
Let ( )y g x  denote the computer model corresponding to the engineering problem, 

the vector T
1( , , )nx x x   represents the n  uncertain parameters to be updated, y  is 

model response. Assuming that the obsn  number of experimental observations are 

denoted by a set      1( , , , , )obsnk
obsy y y y   , each observation is a realization of 

model response. According to Bayes’s rule, the prior probability distribution  f x  

can be updated by the observation set, then the posterior probability distribution can 
be estimated with the following expression 

     
   
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obs
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where    | dobsf f x y x x  is called the evidence, which is a normalizing constant 

ensuring that the posterior probability density integrates to one.  |obsf y x  is the 

likelihood function representing the probability of obtaining the data set obsy  when 

the values of x is fixed at a given value. It also measures the agreement or discrepancy 
between the available experimental data and the corresponding numerical output 
predicted by the computer model [4]. In many literatures, the Approximate Bayesian 
Computation (ABC) method [5] is utilized to represent the full likelihood with an 
approximate function. A typical formulation of likelihood function is defined by 
introducing the deviation y  between computer model and observations, and the 

deviation is modelled with probability density function (PDF) ( )f  . In practical 

applications, the observations are regarded to be mutually independent, so the general 
formulation of likelihood function is 

 
1

| ( | )
obsN

obs k obs
k

f f y


y x x .                      (2) 

 
In this paper, the deviation is assumed to follow Gaussian distribution with zero mean 
and covariance matrix R . Then the likelihood function can be expressed as 
 

           1
1/2/2

1 1
| exp{ ( ( )) ( ( ))}

2(2 ) obs

T
obs obs obsn

f g g


   y x y x R y x
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where ( )g x  is regarded as the model predictions at given value of x . When the 
observations are mutually independent, the matrix R  is in diagonal type.  
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3  BUS combined with active learning GPR model 
 
For nonlinear computer models and non-Gaussian prior distribution, an analytical 
formula of the posterior PDF function in Equation (1) is usually not possible. From 
this perspective, performing the Bayesian updating through a sampling algorithm is a 
common and effective approach being widely used in model calibration. In this work, 
a competitive sampling algorithm named BUS is investigated and modified. The core 
idea of BUS is to transform the Bayesian updating into a structural reliability problem 
by constructing an auxiliary limit state function. In the following, a simple rejection 
sampling method (BUS-RS) is briefly reviewed to represent how to use BUS method 
to generate posterior samples.  

 

First, the observation domain is defined as 
       | | 0 , 0obs obsp cf p cf h p                 y x y x x  ,              (4) 

where p  is an auxiliary standard uniform random variable in [0,1], c  is a positive 

constant ensuring that  | 1obscf y x . The determination of the c  value is discussed 

in detail in Ref.[2]. The auxiliary limit state function becomes 
 ( , ) |obsh x p p cf  y x , and the observation domain can be regarded as the failure 

domain in reliability analysis problem. Straub et al. has proved that the samples in the 
observation (failure) domain   actually follow  the  posterior   distribution
 | obsf x y .     

 

Among the prosperous methods of reliability analysis, stochastic simulation 
methods that combine the advantage of GPR model has received considerable 
attention [6]. This paper integrates the advantage of active learning GPR approach 
into Bayesian updating sampling algorithm, providing a promising updating 
procedure with significantly reduced computational cost.  

 

Consider the limit state function ( , )h px  in Equation (4), let ( , )pz x  denote the 
1n  -dimensional random variables. The GPR model as an approximation of the true 

limit state function is denoted by ˆ( )h z . Assuming it is a Gaussian process (denoted 
by Μ ) before training, i.e.,   

ˆ( ) ( ( ), ( , '))h m kz Μ z z z ,                                  (5) 
 

where ( )m z  is the mean function, and ( , ')k z z  is the kernel function representing the 

covariance between two realizations z  and 'z . Then trN  training data set ( , )tr trZ h  is 

used to train this GPR model, the maximum likelihood method is commonly used for 
estimating the values of hyper-parameters in the mean and kernel function. Once the 
hyper-parameters are determined, ˆ( )h z  can provide posterior prediction at a new 

realization *z  which is a Gaussian variable with mean ˆ ( )
h

 z  and variance given by 
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where K  is a ( )tr trN N -dimensional matrix. Note that the variance 2
ˆ ( )
h

 z  

quantifies the prediction accuracy of the GPR model. 
 
Once a problem for Bayesian updating is specified, the prior distribution, 

observation data as well as the likelihood function are determined, then the auxiliary 
limit state function in BUS method can be formulated accordingly. For this induced 
reliability analysis problem, active learning GPR based on crude Monte Carlo 
simulation is applied. After the adaptive training stops, the well-trained GPR model 
can be used to predict whether a new sample is located in the observation domain or 
not. The residual procedure for generating posterior samples is the same with rejection 
sampling mentioned in section 2.   
 
4  Stepwise Bayesian updating approach: Enhanced BUS-GPR 
 
BUS-AGPR proposed in Section 3 is a direct combination of BUS method with GPR 
model-based active learning approach. In this section, an innovative approach is 
proposed as an extension of BUS-AGPR, named varying observation domain 
approach (BUS-AGPR-VOD). The special design is motivated by the specific feature 
of the induced limit state function; it provides an effective way to further draw 
posterior samples with minimum number of evaluations of computer model.  

 
By using the likelihood function expression in Equation (3), the original formula 

of limit state function is further derived as  

11
'exp{ ( ( )) ( ( ))}

2
T

obs obsp c g g        
y x R y x     (7) 

where 
1/2/2' / ((2 ) )obsnc c  R . It is obvious that p  is a critical variable affecting the 

limit state, a certain value of p  determines a certain observation domain for x . From 
qualitative perspective, the smaller the value of p , the larger the observation domain 
will be, thus leading to a relatively higher acceptance rate. Since p  is an auxiliary 
standard uniform random variable, here we propose to use the samples of p  to 
establish a series of varying observation domains for active learning BUS algorithm.  

 
Consider there are pN  samples of p , and the logarithmic formula is introduced 

on both sides in Equation (7) to reduce the nonlinearity of limit state function. Take 
the r -th sample ( )rp  for instance, the r -th varying observation domain is analytically 
derived as below 

 

 
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log( ) log( ') ( ( )) ( ( )) 0
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where  ( )rt x  is the r -th limit state function. Then a GPR model is constructed to 
approximate the n -dimensional limit state function instead of 1n  -dimension one in 
Section 3. The flowchart of varying observation domain approach is shown in Figure 
1.  
 

Note that the training set T  actually contains the model response samples ( )( )sg x  
predicted by computer simulator. The training set can be repeatedly used for 

evaluating each limit state function  ( )rt x . That means, most of the GPR models may 
share the same training samples with satisfied accuracy. 

 
 
 

 
 

Figure 1: Flowchart of stepwise Bayesian updating approach. 
 

 
 
When the number of observations is large, the rare acceptance rate may still make 

it difficult to approximate the boundary. Then other advance active learning reliability 
analysis approaches, such as line sampling [7] and subset simulation [8] can be 
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combined in above flowchart. Additionally, iterative updating can be considered. That 
means to gradually include the observations into the auxiliary limit state function. It 
can partly relieve the computational burden caused by the significant decrease of 
acceptance rate. Furthermore, when the observations are independent, an optional 
modification is to utilize the strategy proposed in Ref.[4] of transforming the problem 
into a parallel-system reliability analysis.  

 
5  Case studies: A cantilever beam 
 
Recalling the typical example of cantilever beam in Ref.[3], which has an analytical 
solution allowing a validation of the method. The length of the beam is 5 meters under 
a deterministic point load 20kNV   at the free end. The aim is to update the spatially 
flexibility function ( )F x  based on the measured beam vertical deflections ( )W x . The 
analytical formulations between the flexibility and vertical deflection are listed in 
detail in Ref.[3]. The prior distribution of ( )F x  is described by a homogeneous 
Gaussian random field. Measurements w  of the vertical deflection are made at ten 
points from (0.5m,1m,…,5m) along the beam with optic measurements, as shown in 
Figure 2.   
 

Bayesian updating with the proposed stepwise approach as well as other 
comparative methods are performed. The constant c  is selected as the inverse of the 
likelihood function at the maximum likelihood estimate. The updated flexibility 
functions by three methods are plotted in Figure 3(a), while the flexibilities before and 
after updating are drown in Figure 3(b) at two representative points 1mx   and 

5mx  , respectively. The corresponding posterior statistics of flexibility are listed in 
Table 1, the proposed method only consumes 67 function evaluations, showing the 
effectiveness and efficiency of stepwise Bayesian updating in active learning manner. 

 
 

Figure 2: The vertical displacements at ten points with optic measurements. 
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(a) Updated flexibility function         (b) Flexibility before and after updating 

Figure 3: 95% CIs for BUS-AGPR and BUS-AGPR-VOD method. 
 
 
 

Methodolog
y 

callN   Posterior 
mean   at 

X=1m 

(1e-7) 

Posterior 
varianc v  at 

X=1m 

(1e-16) 

Posterior 
mean   at 

X=5m 

(1e-7) 

Posterior 
variance v at 

X=5m 

(1e-16) 

Acceptance 
rate accp   

BUS-AGPR 316 0.7740(0.0108) 1.5826(0.1949) 1.3441(0.0027) 9.7778(1.2292) 6.75e-4 

BUS-AGPR-
VOD 

67 0.7547(0.0002) 1.5899(0.0275) 1.3345(0.0003) 9.6073(0.1608) 6.48e-4 

True values \ 0.7606 1.7002 1.3092 9.6856 \ 

Table 1: The estimated posterior statistics for BUS-AGPR and BUS-AGPR-VOD 
method as well as the analytical results. 

 

6  Conclusions and Contributions 
 

Model updating is an essential step to assimilate the experimental data into 
computational models. In this paper, we develop a step-wise active learning procedure 
based on Gaussian Process Regression to approximate a series of limit state as well as 
the acceptance rates, in this way to largely improve the efficiency in the exploration 
of rare event in the induced reliability problem.  
 

In the case study, for the multi-location type of observations, single-output 
metamodels such as kriging, GPR models, cannot be directly used for representing 
the ten-to-ten models. In this cantilever beam example, the single-output metamodels 
are utilized to represent the likelihood function based limit state function instead of 
the original computational models, hence, the single-output metamodels can still be 
effectively used to largely reduce the computational cost. 
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