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Abstract 
 

Sketch design plays a very important role in model design. In order to improve the 
efficiency of existing design models that rely on computer-aided and human 
experience guidance, this work proposes a sketch driven machine-learning based 
topology optimization method. It helps designers directly design hand-drawn sketches 
to obtain topology-optimized structures that conform to sketching experience. The 
proposed method uses neural style transfer technique, and can compensate for the lack 
of design experience to obtain optimized structures without the need of multiple 
computational simulation interactions. Specific structural shapes and design styles 
according to the design requirements also can be obtained. In contrast to the approach 
of specifying the undesignable domain and initial layout, similarity constraints 
between sketches and structures are constructed to quantify the degree of inheritance 
of different sketches. Both 2D and 3D problems are solved to illustrate the 
effectiveness of the proposed approach. 
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1  Introduction 
 

As an assisting technique for structural design, sketch is a basic tool for intuitively 
expressing design intent and conveying a priori knowledge. For example, designers 
can draw sketch schemes with basic concepts and element layouts based on design 
requirements and experience, and continuously refine them on this basis to achieve 
the purpose of stimulating creativity and rapid design. Therefore, the sketch not only 
can quickly and accurately reflect the design ideas and structural forms, making the 
subsequent process more simplified and efficient, but also has the potential to combine 
with topology optimization to directly guide the optimization of design [1,2]. Enno et 
al. [3,4] proposed an assisted topology optimization method for designers to 
communicate intuitively with artificial intelligence tools to help designers improve 
their initial sketches. The method generates structures that match the drawing load 
profile by training an artificial neural network. Xie et al. propose a topology 
optimization method SP-BESO that takes into account the designer's subjective 
preferences (SP). It introduces subjective scoring and a texture-based drawing system 
into the bi-directional evolutionary structural optimization (BESO) technique. It 
allows the designer to add subjective preferences, iterate and interact continuously to 
create topologically different and structurally efficient solutions [5]. Denk et al. 
established a sketch-based reverse engineering to reconstruct the 2D sketch shape 
obtained from topology optimization into a subdivision surface control mesh for 3D 
redesign, which is evaluated by finite element analysis [6]. In addition, sketch-guided 
topology optimization functionality has been integrated in several commercial 
software. SketchOpt [7] introduces an automated design generation system that takes 
as input a sketch of the basic plane and as output a parametric model prepared for 
multi-objective building optimization. It helps designers explore multiple 
performance-based layout plans in the early stages of the design process. 
DreamSketch [8] software uses a new design workflow that allows designers to 
express their design intent through sketching, while the computer uses methods such 
as topology optimization to help designers explore additional solutions with better 
performance. These solutions are enhanced as 3D objects in a sketching environment. 
Users can interact with the scene to select and modify within the generated solutions. 

 
Although the above-mentioned research on topology optimization combined with 

sketching has improved the efficiency of structural design, it is still mostly based on 
the idea of mutual correction of sketching and topology optimization. This may cause 
the following problems: 1) The features of sketch are difficult to be controlled 
explicitly in topology optimization. Too strong sketch features tend to destroy the 
optimized mechanical structure, while too weak sketch features cannot represent the 
existed design experience; 2) The mutual correction method has the potential to cause 
repeated iterations of the design. Since the sketches are not effectively integrated into 
the topology optimization, the sketches need to be constantly revised according to the 
optimization results to meet the design requirements. The above analysis shows that 
there is an urgent need for a deep integration method of sketching and topology 
optimization to realize sketch-driven topology optimization. In this paper, we propose 
a sketch-driven topology optimization method based on machine learning for a priori 
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knowledge-guided structural topology optimization design problems. In this 
approach, CAD descriptions or even hand-drawn sketches can be directly used to 
guide topology optimization and to make real-time corrections according to design 
requirements. In the SIMP topology optimization framework [9], unlike the traditional 
method of specifying the undesignable domain and initial layout [10,11], this paper 
defines sketch data in the topology optimization column equation based on machine 
learning techniques. This allows the topology optimization results to explicitly control 
the extent to which the sketch is presented. Using this approach, the designer can 
quickly communicate the design intent in the topology optimization and obtain an 
optimized structure that meets the design requirements. 

 
2  Methods 
 

In this study, style transfer technique [12] is used. The purpose of style transfer is 
to blend the content image and the reference image together. For the content transfer, 
the technique extracts the content of the reference image and imports it into the target 
image. 

 
The difference of content between a target structure and a reference sketch can be 

measured by function 𝐿ௗ௜௙௙: 
𝐿ௗ௜௙௙ሺ𝒙, 𝒂ሻ ൌ  𝐿௖௢௡௧௘௡௧ሺ𝒙, 𝒂ሻ ൅ 𝐿௧௩ሺ𝒙ሻ,                           ሺ1𝑎ሻ 

where 

𝐿௖௢௡௧௘௡௧ሺ𝒙, 𝒂ሻ ൌ ෍ 𝑤௖
௟𝐸௖

௅

௟ୀଵ

,                                                  ሺ1𝑏ሻ 

𝐿௧௩ሺ𝒙ሻ ൌ 𝑤௧௩𝐸௧௩                                                                    ሺ1𝑐ሻ 
with 

𝐸௖ሺ𝒙, 𝒂, 𝑙ሻ ൌ
1
2

෍൫𝐹௠௞
௟ െ 𝑆௠௞

௟ ൯
ଶ

௠,௞

,                                           ሺ1𝑑ሻ 

𝐸௧௩ሺ𝒙ሻ ൌ ෍ ቀሺ∇௫𝒙ሻଶ ൅ ൫∇௬𝒙൯
ଶ

ቁ
ଵ.ଶହ

                                    ሺ1𝑒ሻ 

 
In Equation (1), the vectors 𝒂 and 𝒙 represent the image data associated with the 
sketch and the optimized structure (target image), respectively. They consist of the 
optical primary colors 𝑅௖, 𝐺௖, and 𝐵௖. The symbol 𝑙 denotes the number of layers of 
the VGG-19 model network. 𝐿௖௢௡௧௘௡௧ is the function that calculates the difference in 
content between the sketch and the optimized structure. This function is able to 
process the image and calculate the mathematical description of the content. 𝐿௧௩ is the 
total variable loss, which serves to enhance the spatial smoothness of the generated 
image and avoid the results of over-pixelation. The symbols 𝑤௖  and 𝑤௧௩  are the 
weighting coefficients. 𝐸௦ሺ𝒙, 𝒂, 𝑙ሻ is the content contribution of the 𝑙-th convolutional 
layer to the total loss, and 𝐸௧௩ is the total variable contribution. The filters with size 
of 3 ൈ 3 ൈ 𝐶 are applied to the convolutional layers of the used network. Each layer 
can be considered as a nonlinear filter bank whose activation in response to the image 
forms a set of feature maps. The symbol 𝐶 is the number of total channels, i.e., in the 
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RGB color image, 𝐶 ൌ 3 . These feature maps are stored in the matrix 𝐅௟, 𝐒௟ ∈
ℛே೗ൈெ೗, where 𝐹௠௞

௟  and 𝑆௠௞
௟  are the activations of the 𝑚-th filter in the 𝑙-th layer layer 

at position 𝑘 ∈ 𝑀௟; 𝑁௟ is the number of different filters, which means that there are 𝑁௟ 
feature maps whose vectorized size is 𝑀௟ in the 𝑙-th layer. 

 
In this paper, topology optimization is performed in the density-based SIMP 

framework. In the SIMP framework, a set of continuously varying densities is used to 
describe the structural topology and geometric structure. The similarity constraint 
function can be naturally introduced into the SIMP-based optimization column, due 
to the fact that both the sketch in deep learning and the structural topology in SIMP 
are described in terms of pixels. Thus, the problem can be formulated as in Equation 
(2): 

           Find    𝝆ୃ, 𝒖                           
Minimize    𝐼 ൌ 𝒇ୃ𝒖                

S. t.                                                                          
𝐊ሺ𝝆ሻ𝒖 ൌ 𝒇,            

𝑔ଵሺ𝝆ሻ ൌ 𝐿ௗ௜௙௙ሺ𝝆; 𝒂ሻ ൑ 𝜀, 

𝑔ଶ ൌ ෍ 𝜌௘

௡

௘ୀଵ

𝑣௘ ൑ 𝑉ത, 

𝒖 ൌ 𝒖ഥ, on  Γ௨, 
𝜌௜ ∈ ሾ0,1ሿ ∀ 𝑖 ∈ Ω,                                                     ሺ2ሻ 

where 𝜀 is a constant to control the similarity. It is worth noting that the density field 
𝝆  should be replaced by  𝝆෥ ൌ 𝐓 ൈ 𝝆ୃ  in the calculation of 𝑔ଵ . The symbol 𝝆෥ 
represents the image data (composed of optical primary colors) converted from the 
grayscale described by the densities of the optimized structure, where 𝐓 denotes the 
conversion matrix to extend the dimension of 𝝆.   
  

The transfer learning model used in this paper is the VGG-19 model. Before 
importing into the model, the sketch 𝒂 will be divided into two parts (i.e., Ω௦೔ denotes 
the sketch area and the void area). Here, we define Ω௦భ and Ω௦మ as the areas occupied 
by the sketch and the void, respectively. Then 𝒙′ and 𝒂′ are defined as Equation (3): 

𝒙′ ൌ ൜𝒙, if 𝒙 ∈ Ω௦భ

0, if 𝒙 ∈ Ω௦మ
, 𝒙 ൌ 𝝆,෥                                               ሺ3𝑎ሻ 

𝒂ᇱ ൌ 𝒂 ൅ 𝐓 ൈ ሺ𝒐𝒏𝒆𝒔 െ ሺ
𝝆′ୃ

𝝆′ୃ
௠௔௫

ሻଷሻ,                                   ሺ3𝑏ሻ 

with 

𝝆′ ൌ ൜
𝝆, if 𝝆 ∈ Ω௦భ,
0, if 𝝆 ∈ Ω௦మ,

                                                          ሺ3𝑐ሻ 

where 𝒐𝒏𝒆𝒔 is the unit matrix of the same size as 𝝆′. The sketch 𝒂 is improved to the 
trivial penalty in Equation (3a). The significance is that it enables the similarity 
constraint to prioritize the less dense regions of Ω௦భ at the beginning of the iteration 
to prevent being optimized to void material by the objective function. Normalization 
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as a numerical trick can weaken the constraint strength of the sketch, allowing the 
structure to adjust the sketch guided by the stiffness, and the latter term of Equation 
(3c) will be infinitely close to 0 in the late iteration. 
 
3  Results 
 

According to numerical experience, only Conv3_2 is considered in the calculation 
of 𝑔ଵ in this paper. Due to the influence of down-sampling, Conv1_2 and Conv2_2 
can be considered if the structure size is too small, and Conv4_2 can be considered if 
the structure size is too large. Conv5_2 is not suitable for sketch inheritance. 

 

In this section, a cantilever beam design with dolphin shape topology optimization 
example shown in Figure 1. We will illustrate the adaptability of the proposed 
approach to sketch-driven topology optimization design. With volume constraints and 
machine learning assisted similarity constraints, the objective is to minimize the 
compliance of the structure, allowing simultaneous optimization of sketch experience 
and structural stiffness. Figure 2 shows the design domain, loads and boundary 
conditions for a cantilever beam structure. The design domain is a 1 ൈ 1 (discrete to 
400 ൈ 400) area subjected to a downward concentrated force load in the lower right 
corner. The volume constraint is V ൑ 0.2|𝐷| . The result of the pure compliance 
minimization result is shown in Figure 2b (𝐼 ൌ 178.518), where the main beam is 
concentrated at the upper left corner where the constraint is located and the lower part 
of the structure is the downward extension arm of the beam. 

 

In the topology optimization while considering the sketch Figure 2a, the head of 
the dolphin plays a role of supporting. The extension arm in the lower right corner is 
replaced by the caudal fin, and the pectoral fin is taken into account to make the 
dolphin shape more abundant. The sketch is broken at the connection of the line to 
verify the stability of the algorithm, and secondly, the dorsal fin is in the inefficient 
force transfer region of the structure in order to make the algorithm optimization more 
difficult. 

 

To compare the algorithm in this work with the method of setting undesignable 
domain, Figure 2c (𝐼 ൌ 221.850) shows the optimization results of setting the sketch 
part to the undesignable domain. It can be observed that the dorsal fin is completely 
preserved and the pectoral and caudal fins have lines separate from the structure. The 
structure is not optimal, part of the material loses performance and does not contribute 
to the compliance. When considering setting the sketch part as the initial layout for 
the first step of the topology optimization iteration, as shown in Figure 2d (𝐼 ൌ
187.907). In the initial material distribution, the density of the sketch part is set to be 
𝝆 ൌ 1, 𝝆 ∈ Ω௦భ and the rest of the part is weak material 𝝆 ൌ 0.01, 𝝆 ∈ Ω௦మ, it can be 
observed that the presence of the jawed part of the sketch makes the structure different 
from the pure compliance result in the constrained region. Secondly, since the sketch 
is concentrated on the upper right side, the final optimization results are also 
distributed so that the thin short beam in the lower left part disappears. 

Using the algorithm of this paper, the upper limit of the similarity constraint is set 
to a very strong 𝜀 ൌ 0.035𝜀଴ , and the corresponding optimized structure is shown in 
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Figure 2e (𝐼 ൌ 209.165). 𝜀଴ is the difference in the sketch inheritance between the 
initial structure (pure gray structure) and the reference sketch. In contrast to setting 
the undesignable domain method, there is no material distribution in the structure that 
contributes to 0, although the dorsal fin also remains. To make the structure optimal 
under this strength constraint, the structure changes from a longer beam to a 
combination of many shorter beams with a better objective function. When the upper 
limit of similarity constraint is set to 𝜀 ൌ 0.15𝜀଴ , the corresponding optimized 
structure is shown in Fig. 2f (𝐼 ൌ 196.821), and the dorsal fin is degraded to the 
existing structure. To make the structural connectivity preserved, many short beams 
serve as interconnections, and the number is smaller relative to the 𝜀 ൌ 0.035𝜀଴ 
result. Many detailed parts of the dolphin sketch are modified by the stiffness, but it 
also clearly reflects the presence of the dolphin structure. 

   

Figure 1: A dolphin beam example. 

4  Conclusions and Contributions 
 

In the present work, a novel topology optimization approach is proposed for 
sketch inheritance. To achieve this approach, the content difference between the 
sketch and the structure is defined as an explicit control in the SIMP framework. 
Machine learning techniques are used to measure the values of the features quantified 
by the content. The optimization results can well inherit the regions of the sketch that 
contribute more to the structural stiffness and assist in the modification of the regions 
that contribute less. Numerical calculations show that the method can design an 
optimization structure inherited to the essence of the sketch, making the connection 
between the designer and the mechanics deepen. Corresponding studies and results 
will be reported in the future 

𝑭 ൌ 𝟏 

𝟏 

𝟏

𝟎. 𝟑 
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Figure 2: The optimized design of dolphin beam example.(a) Sketch; (b) The 
pure compliance minimization result; (c) The pure compliance minimization result 
with undesignable domain of sketch; (d) The pure compliance minimization result 
with initial layout of sketch; (e) The optimized design referring to the sketch with 

𝜀 ൌ 0.035𝜀଴; (f) The optimized design referring to the sketch with 𝜀 ൌ 0.15𝜀଴. 

ሺ𝑒ሻ ሺ𝑓ሻ

ሺ𝑎ሻ ሺ𝑏ሻ

ሺ𝑐ሻ ሺ𝑑ሻ

Sketch TO result

Undesignable domain 
Initial layout with 

sketch

Sketch inheritance of  
𝜀 ൌ 0.035𝜀଴ 

Sketch inheritance of  
𝜀 ൌ 0.15𝜀଴
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