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Abstract 
 

This Fast and accurate implementation of train bearing fault identification has been 

one of the key tasks of intelligent train health maintenance. In recent years, with the 

development of deep network technology, some bearing fault identification solutions 

based on deep learning have shown strong competitiveness. However, in the process 

of actual train application and maintenance, it has higher requirements for data volume 

and more complicated calculation. Therefore, an integrated learning-based bearing 

fault identification scheme is proposed. Overlapping sampling is performed 

considering the correlation before and after time series. Feature sets are constructed 

based on the characteristics of train fault signals and improved based on the XGBoost 

(Extreme Gradient Boosting) algorithm to achieve adaptive hybrid feature selection 

as well as fault identification. The effectiveness and superiority over the above method 

is verified by testing and evaluating two open-sources bearing datasets and laboratory 

bearing datasets. 
 

Keywords: train bearing fault diagnosis, integrated learning, feature selection, 

XGBoost. 
 

1  Introduction 
 

As a key component of the travel section, the health conditioned monitoring and 

maintenance of train bearings have been the focus of research[1]. In the 21st century, 

along with the rise of deep learning, many sophisticated deep learning frameworks 

have been applied to time series regression and classification problems. These 
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methods construct the feature engineering and prediction models after traditional fault 

identification with a large framework of feature self-selection based on networks, 

avoiding the subjectivity of the manual feature selection process and the dependence 

on historical experience of feature extraction in each domain[2,3]. 

However, in order to obtain deep learning models with high generalization ability 

and robustness, a large amount of data is needed for model training or expanding the 

sample size based on deep learning, such as GAN[5], domain adaptive[6], or semi-

supervised learning[4]. However, among train bearing fault identification tasks, the 

number of negative samples and label acquisition are still more challenging. In 

practical engineering applications, complex networks often imply more demanding 

hardware facilities, which is more challenging for train health monitoring, especially 

for train in-transit detection. 

Vibration signals are commonly used for fault diagnosis due to their better 

characterization capabilities. The characterization methods of its features are divided 

into two main categories physical features and virtual features. Virtual features are 

derived from deep learning feature extractors and may be better but less 

explanatory[7]. Physical features have some physical meaning [8], but a large number 

of physical features may cause a dimensional disaster, increase the training difficulty, 

and get an overfitting model. 

Ensemble learning combines multiple learners to accomplish the task, and 

Boosting can upgrade weak learners to strong learners. XGBoost (Extreme Gradient 

Boosting)[7] is an improvement on GBDT that introduces the idea of regularization 

to reduce the complexity of decision trees and obtain a more optimal model. 

In this paper, for the train bearing fault identification problem, we proposed to 

configure a stronger feature input processing structure combined with an integrated 

learning classification model based on the characteristics of the train bearing vibration 

signal[9], and apply it to the practical: 

 

1. Pre-analysis of bearing vibration signals and selection of key features to form a 

feature set. 

2. Based on XGBoost, scoring high-dimensional feature sets, dimension reduction, 

and identifying fault types. 

3. Validation of the model using three data sets. 
 

2  Methods 
 

2.1 Overall Workflow 

 

In this section, the proposed integrated learning based bearing fault identification 

method is presented in detail. As shown in Figure1, the proposed method consists of 

two main modules, the hybrid feature selection and the fault identification modules. 

The input to the feature selection module is a high-dimensional feature vector 

( ,1) ( ,2) ( ,3) ( , ) 1{ ( , , ,..., )}N

i i i i i i ix x m m m m  == = constructed based on time-frequency 

features, where N is the sample size and  is the feature dimension of a single sample. 

In the classification module, the input features selection module uses the filtered low-

dimensional features for the classification task. 
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Figure 1:  Schematic diagram of the technical approach.   

 

2.2 Features Engineering 

 

Feature set construction. The features are extracted in the time domain, frequency 

domain and time-frequency domain from the vibration signal. In the time domain, 

statistical features are mainly extracted, such as variance, margin factor. In the 

frequency domain, the Fourier transform is performed on the data to extract the center 

of gravity frequency, frequency variance, and other frequency domain features. 

The spectrograms of each state were observed, and it was found that the amplitude 

of the bearings on different states differed greatly in the characteristic frequencies, 

and the amplitude features were extracted from the characteristic frequency range 

(Figure 2). Welch spectral estimation method is performed to analyse the extracted 

features, which combines two methods of adding window smoothing and averaging 

period to reduce the variance and make the spectrum smoother. A rectangular window 

function is selected to obtain the periodogram and then the Welch power spectral work 

is calculated and the energy amplitude of the feature range is extracted as the 

eigenvalue (Figure 3). 

 

2.3 Integrated Learning-based Fault Classification 

 

XGBoost[10] is an improved algorithm based on GBDT. XGBoost is used as a 

classifier to train K trees, and the ( )kf  is complexity of the first K trees. 
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Where j is the leaf node, T the number of leaf nodes, j  is the node value of the 

leaf,   and   is the hyperparameter. 
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The objective function is： 
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ig  and 
ih ,  respectively, denote the 1st and 2nd order derivatives of the loss 

function of the k-1th decision tree. 

 

 

 
Figure 2: Frequency domain analysis based on FFT to extract the maximum 

amplitude of the feature frequency ranges as features（Spectrum of samples of CSU 

datasets）. 
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Figure 3:  Feature extraction based on Welch's spectral estimation method to 

extract the maximum magnitude of the feature frequency range (CSU datasets 

sample power spectrum). 

 

3  Results 
 

This section tests and evaluates the above methods based on three datasets, and also 

compares the classical machine learning models GBDT, SVM and the more popular 

deep learning frameworks currently available. 
3.1 Experimental Setup 

Datasets. To evaluate the effectiveness of this method, bearing failure data from 

two public datasets CWRU and XJTU [11], and data from the Key Laboratory of the 

Ministry of Education for Rail Transit Safety of Central South University (CSU) were 

used for testing. The sample sizes and length of each dataset are shown in Table 1. 

 

Dataset Sample Length Class Window Length 

CWRU 640 3000 4 1024 

XJTU 1920 1024 15 512 

CSU 5440 4096 5 2048 

Table 1:  Statistics of Datasets 
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Figure 4: Test stand and bearing used for CSU data set (Bearing Type: normal 

condition, inner ring failure, outer ring failure, roller failure, mixed failure) 

Feature Engineering. To save calculation time, sampling and Welch spectrum 

estimation sliding window lengths are shown in Table 1. The feature sets are 

constructed according to the method described in the previous chapter. Feature 

scoring is performed based on XGBoost, and an adaptive threshold picker is set. When 

the score of the next digit is lower than 1/3 of the previous digit, the value is set as the 

threshold. 

 
Figure 5: Feature score of one of the samples in the datasets CSU 

 
3.2 Test results 

 

In the classification test, each dataset was divided into training and test sets at 10%, 

30%, 50%, 70%, and 90%. The classification accuracy and speed of SVM, GBDT, 

XGBoost (Featureless selection), XGBoost, MLP were compared for the 

classification task. 

As shown in Table 1 and Table 2, the accuracy rate is used as the first evaluation 

criterion, and when the accuracy rate is consistent, the computation time was 

borrowed for ranking. It can be seen from Table 1 and Table 2 that the SVM’s training 

time is long, especially in the data set with large sample size MLP's performs better 

in classification tasks with less variety (CRWU,CSU), but the recognition accuracy is 

not high in XJTU. The accuracy of the classifier based on the XGBoost algorithm 
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with the addition of feature selection is reduced compared to the previous one but the 

comprehensive speed-up effect is evaluated and the method is better than the former. 

 

 

Test 
Ratio 

Datasets SVM GBDT 
XGBoost 

(Featureless 
selection) 

XGBoost MLP 

10% 

CWRU 

100 100 100 100 100 

30% 100 100 100 99.48 100 

50% 96.88 100 100 99.69 100 

70% 93.30 99.77 99.77 99.78 100 

90% 93.92 23.78 23.78 99.83 100 

10% 

XJTU 

8.97 90.63 95.31 95.83 29.69 

30% 8.54 89.41 93.31 94.97 27.43 

50% 8.85 88.54 93.85 91.35 25.83 

70% 9.64 86.16 91.07 89.14 21.21 

90% 0 82.18 75.64 76.85 24.77 

10% 

CSU 

92.85 99.81 100 99.82 99.08 

30% 98.46 99.93 100 99.94 98.47 

50% 99.03 99.96 99.69 99.89 99.19 

70% 98.46 99.92 99.89 99.84 98.47 

90% 92.85 99.57 99.61 99.95 92.85 
Table 2: Test accuracy on different datasets 

 

 

Test 

Ratio 
Datasets SVM GBDT 

XGBoost 

(Featureless 

selection) 

XGBoost MLP 

10% 

CWRU 

394.53 1.90 1.10 0.86 6.27 

30% 245.68 1.75 0.99 0.82 6.75 

50% 132.50 1.60 0.88 0.75 4.92 

70% 53.76 1.34 0.74 0.69 3.24 

90% 10.12 1.25 0.66 0.59 1.05 

10% 

XJTU 

451.33 20.09 15.21 9.72 45.11 

30% 341.01 17.35 12.21 7.87 34.03 

50% 272.44 13.79 8.99 5.99 29.78 

70% 1992.10 10.42 5.73 6.00 18.77 

90% 92.69 6.18 2.97 2.52 14.01 

10% 

CSU 

267.24 9.19 5.91 7.99 97.44 

30% 2114.47 7.36 4.86 6.38 103.61 

50% 5701.43 5.77 3.84 5.14 80.03 

70% 2117.63 4.28 2.80 3.55 110.99 

90% 261.26 1.89 1.82 2.10 102.03 

Table 3:  Time required for classification testing 
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4  Conclusions and Contributions 
 

In this study, we proposed a hybrid feature selection and classification method for 

bearing fault identification based on integrated learning XGBoost. Sliding overlap 

sampling was performed considering time series before and after correlations. An 

adaptive selector was added to the feature set evaluation to achieve feature dimension 

reduction. The improved feature input combined with an integrated learning classifier 

based on XGBoost was evaluated on two public bearing datasets and a laboratory 

measured dataset, respectively. The method was compared with the classical machine 

learning method SVM, the integrated learning algorithm GBDT, and the deep learning 

algorithm MLP. The evaluation was carried out in two aspects: recognition accuracy 

and recognition time. The experimental results demonstrate that well-designed 

features engineering, constructing effective inputs, combined with integrated machine 

learning methods can outperform not only classical machine learning but sometimes 

deep learning networks as well. 

In train bearing operation and maintenance tasks, effective networks based on deep 

learning are costly to implement due to environment, hardware facilities, positive 

sample size, etc. The method in this paper is applied to train bearing fault monitoring, 

which can improve the threshold algorithm and input structure based on train bearing 

characteristics and reduce the difficulty of the task. In the future, the method can also 

be embedded into a deep learning framework such as ResNET, CNN to build a fault 

monitor widely used in railroad lines. 
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