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Abstract 
 

Vehicle dynamics and safety against derailment are directly influenced by the primary 

and secondary suspension of a railway vehicle. During the operation faults of 

components like broken springs or dampers can occur. To prevent a complete system 

failure, the early detection of faults in the suspension of trains is thus of high 

importance. A novel approach to sensitive and robust structural health monitoring is 

proposed. It is based on (i) acceleration measurement, (ii) time-series modeling, (iii) 

eigenfrequency and possibly mode-shape extraction, (iv) probability density 

estimation, and finally (v) classification. Compared to traditional approaches the new 

kernel-based probability density estimation allows to aggregate the results from 

different data sets. This approach suppresses the spurious eigenfrequencies and 

emphasizes the physical ones. If, in addition, the mode-shapes are incorporated into 

the system, the probability density estimator becomes multivariate and the diagnosis 

accuracy improves further. 
 

Keywords: structural health monitoring, automatic fault diagnosis, subspace 

identification, eigenfrequency density estimation. 
 

1  Introduction 
 

The safety and the dynamics of railway vehicles are strongly influenced by their 

suspension system. To prevent derailments or complete failures of vehicles, the early 

detection of faulty springs or dampers is of high importance [1, 2]. 
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This publication is widely based on [3] and presents an automated fault detection 

approach based on data driven system identification using accelerometer signals 

installed on the bogie. The signals are sampled simultaneously and evaluated by 

means of online monitoring methods. The signal evaluation consists of two steps. 

First, a stochastic subspace-based system identification algorithm (SSI) is used to 

extract damage sensitive dynamical features. In our case the features are: 

eigenfrequencies (f) and their corresponding mode-shapes (Ψ) and modal dampings 

(d). In a second step, a probabilistic approach based on kernel density estimation is 

applied for fault detection to distinguish between different failure causes. Here 

probability density functions are used to describe the most likely values of the 

eigenfrequencies in the fault-free and faulty case. Comparing new data to the density 

functions determined in a previous training phase allows to assess if a failure has 

occurred or is likely to occur and what type of fault is the most likely one. 

 

Subspace-based algorithms for dynamical properties identification are well-known 

[4]. It is important to note that this procedure represents only a numerical way to 

extract dynamical properties from measured data of a linear dynamical model under 

unknown random excitation. Due to the sensor quality, the assumptions violation 

regarding the excitation, and possible system non-linearity, etc. the extracted 

dynamical properties can be of physical or numerical (spurious modes) nature. In 

conclusion a procedure to extract only the physical modes is necessary.  

 

In the past the automated feature extraction was usually performed using so-called 

stabilization diagrams. This required experience-based knowledge about setting 

parameters and the application of a high number of criteria for classifying the features 

in the diagrams [5]. 

 

The motivation for this paper is to overcome this and to improve the automatic feature 

extraction by using the statistical modelling of the eigenfrequencies by means of 

density functions. A physical pole will be represented in the data set by a high 

eigenfrequency density. Spurious poles are suppressed and less noticeable by a lower 

density. Frequencies calculated online can be now automatically assigned to one or 

other density function belonging to one or other damaged state. 
 

2  Methods 
 

A multi-body model is used to investigate different failure scenarios and to generate 

acceleration signals. The modelled test train, the test track and the ground model are 

based on the Manchester Benchmark [6]. Four accelerometers are located directly 

above the primary suspensions of the leading bogie. A damage was induced at the left 

leading primary suspension by reducing the spring stiffness by 5 to 70 % in 5 % steps. 

The model is excited by random track irregularities according to the power spectral 

densities defined in ERRI B176 while running along the test track. 

 

The proposed method shown in Figure 1 is divided in a training and operating phase. 

In the training phase different probability density functions for n several fault cases 
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are estimated by application of the eigenfrequency density estimator (EDFE). For this 

purpose, first the dynamical properties are determined using the SSI algorithm. To 

account for the statistical variation of these properties, the calculation is repeated for 

m measurements belonging to a system state. 

 

Afterwards the m data sets are passed to a kernel density estimator with a Gaussian 

kernel to estimate a probability density function (PDF) pn. In the case of physically 

meaningful frequencies there will be a high density. Figure 2 shows an example for a 

healthy and a faulty case with m = 20 different data sets for a p = 8 order state-space-

 
 

Figure 1: Schematic diagram of the automatic system identification procedure for 

fault detection. 

 

 

 
 

Figure 2: Top: Eigenfrequency density function pn calculated from 20 different data-

sets for the fault-free and faulty case. Bottom: Positions of the available 8 ∙ 20 = 160 

eigenfrequency values. 
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model. The eigenfrequencies are depicted by circles and triangles. As shown, both 

cases have a different distribution of the frequencies. At 12 Hz only the fault-free case 

and at 4.5 Hz only the faulty case has a high pn. This example shows that the EFDE 

provides a suitable, sensitive and robust tool for obtaining the physical 

eigenfrequencies for different system states automatically. 

 

To monitor the system health in the operating phase, the actual SSI results will be 

calculated from online data and form the data set t. This data set is then assessed using 

the n PDFs obtained beforehand by calculating the probability Pn with regard to each 

n fault cases. Comparing the n different probabilities, a decision about the systems 

health can made by a classification. This procedure is illustrated in Figure 3 for a 

healthy and a faulty data set. As in Figure 2 four eigenfrequencies are considered. In 

this case the data set belongs to the fault-free case, due to of the higher probability. 

 

 

3  Results 
 

Before the concept can be used in a health monitoring scheme, a robust approach is 

required. For this purpose, the probability density functions for a model order p = 26 

were calculated 60 times with 20 randomly selected data sets from 100 data sets (for 

each scenario). The confidence and prediction intervals in Figure 4 show only 

moderate deviations. The main frequencies appear clearly in both states of health. This 

behaviour indicates a robust operation of the EDFE method independent of the 

measured signals. An advantage of a higher order model is the possibility to determine 

higher eigenfrequencies. It should be considered that especially the higher 

eigenfrequencies are more sensitive to damage than the lower ones.  

 
 

Figure 3: Health assessment: The probability is higher when comparing to the healthy 

density function than to the faulty density function, therefore a healthy system is 

assumed. 
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To evaluate the sensitivity of the proposed fault detection method under consideration 

of the SSI model order, simulations with a spring stiffness reduction in the range of 5 

to 70 % in 5 % steps were used for health monitoring with the classification error as 

criterion. The classification error is a measure of the false-positive and false-negative 

classifications relative to the total number of performed classifications. For each fault 

case m = 80 randomly chosen data sets out of 100 available data sets were used to 

calculate the probability density estimate in the training phase and 20 randomly 

chosen data sets from the same 100 available data sets are used for the health 

assessment in the operating phase. This procedure is repeated 100 times for each 

model order and fault case combination. The mean values of the 100 classification 

  
 

Figure 4: Robustness of classification: Eigenfrequency densities pn for the fault-free 

(left, solid) and faulty case (right, dashed). 

 

 
 

Figure 5: Sensitivity of fault detection with consideration of SSI model order; 

Classification error over amount of damage. 
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runs are presented in Figure 5. Generally, damages of 15 % stiffness reduction using 

model orders between 26 and 32 are detected with an error of 5 % and less. 

 

If more than one sensor is available for health monitoring the eigenvectors (mode 

shapes) can also be used to construct multivariate probability density functions with 

additional dimensions derived from the eigenvector values (e.g. ratio of the magnitude 

of the values for each sensor). An example for such eigenfrequency/mode densities is 

shown in Figure 6. It can clearly be seen that the healthy/faulty cases not only differ 

in the frequency but also in the mode dimension, which improves the fault detection. 
 

4  Conclusions and Contributions 
 

In this contribution the faulty front left primary suspension on the leading bogie was 

investigated by using the probabilistic approach of an eigenfrequency density 

estimator (EFDE). First, a state-space-model of order 8 was used to describe the 

density estimator for the health monitoring procedure. The main reason for choosing 

this low order was to gain a more manageable number of 4 eigenfrequencies for a 

clearer presentation of the procedure. But the classification in this case relies heavily 

on the 10 and 12 Hz eigenfrequencies of the faulty and fault-free systems, 

respectively. When the model order is about 26, the eigenfrequencies around 42 and 

45 Hz can additionally be utilized to differentiate between the faulty and fault-free 

state, respectively. This was shown during the robustness analysis and confirmed by 

the sensitivity study. In the future the simulations will be extended to the detection 

and separation of multiple different faults. Also, an investigation related to the 

robustness (varying masses, velocities and the influence of the rail-wheel-contact) and 

the practical application will be essential topics. 

 

 
 

Figure 6: Eigenfrequency/Mode Densities pn for the fault-free (black) and faulty case 

(grey). 
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