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Abstract 
 

Train density on the Swiss rail network has increased significantly in recent years. 
This demands much more from the stability of the system, especially in combination 
with single-track corridors. For railroad companies, it is therefore becoming 
increasingly important to optimize the transport network for stability in order to be 
able to offer the demanded service as reliably as possible on the existing infrastructure. 
An approach to numerical stability evaluation of timed discrete event systems has 
been developed to support planners in testing the timetable for operational stability. 
In this approach, the traffic system under consideration is modeled as a network with 
all relevant timetable events and links. The system modelled in this way can be 
examined for its behavior in the event of a possible disruption using methods from 
max-plus algebra. The typical computation time of an evaluation procedure takes 
more than 65 minutes for a signifcant partition of the line network. This is far too high 
for integration into a practical optimization procedure. 
In this paper we present a contraction procedure added to the existing evaluation 
framework, and thus reduce the computation time by more than 90% without 
compromising the result quality. 
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1  Introduction 
 

In 2019, 200 million train kilometres was covered on the Swiss railway network 
by passenger traffic. This represents an increase of 43% compared to the year 2000 
[1]. The shortening of train headway times associated with this rapid growth places 
much higher system stability requirements. On largely single-lane networks, such as 
that of the Rhaetian Railway (RhB), there is also the challenge of over-proportionally 
increasing intersection events, which affect not only subsequent but also oncoming 
train runs. 

With the increasing density of services, it is becoming more important for railway 
companies to have suitable planning tools at hand to optimize the systems stability. 
Additionally, the Swiss Integrated Fixed-Interval Timetable provides strict 
periodicity-conditions onto new timetable offers, e.g., the new Rhaetian ‘Retica30+’ 
timetable [2]. This again places higher system stability requirements.  

For this, the introduction of a holistic numerical stability analysis as part of the 
planning process is recommended. In this way, those parts of a timetable that are 
particularly susceptible to delays, or are even a chain reaction of delays, could already 
be identified and defused during the planning process. 

An approach for numerically evaluating timetable stability is by applying the so-
called max-plus algebra to timed discrete event systems (TDES, see [5]). The traffic 
system under consideration is set up as an event-activity network (EAN) with all 
relevant nodes and links, representing timetable arrival and departure events with the 
linking process times. The processes considered are operational trip times, headways, 
stopping times, transfer times, crossing times, transit times and turning times. 

The system model created in this way can be examined for its stability in case of a 
disruption. The typical algebraic calculation time of an evaluation process for a 
moderately sized part network of the RhB is still too high (65 minutes) for an 
integration into a practical optimisation procedure. A practical application of this 
method is described in [3]. 

In this paper we present a method for contracting the network graph before 
applying the max-plus stability analysis, to speed up the evaluation process without 
compromising the quality of the results. The acceleration method is applied to a 
timetable scenario of a representative part of the RhB network (see Figure 1, right). 
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The results of the accelerated procedure are compared with those of the original 
procedure based on the uncontracted EAN. The reduced EAN size, the calculation 
times and the calculated indicators will be analysed, evaluated, and discussed.  

 
 

2  Methods 
 
 

Max-plus algebra 
An advantage that results from the formulation of a traffic system as a TDES is the 
possibility of describing and analyzing the system using the max-plus algebra. This 
approach makes it possible to formulate the recursive calculations per event as a linear 
system of equations, which among other aspects enables an efficient generation of the 
desired indicators, see [4], [5] and [6]. All these indicators of timetable stability can 
be derived from the critical cycle. 
 
 
Critical cycle and performance indicators 
In a periodic timetable, departure and arrival events are repeated periodically, usually 
hourly. A periodic sequence of events and process times (see introduction) is called a 
cycle. This cycle begins and ends with the same event at the same geographical 
location on the rail network. Several train runs of different lines can occur within a 
cycle. The critical cycle in a system is the one that has the largest cycle mean or the 
least buffer time to the timetable periodicity [6] and [7].  

The largest cycle mean is the length of time in which all cycles of the system can 
be carried out at least once. Its meaning for the evaluated timetable stability indicators 
CDS (cumulative delay sensitivity) and CDI (cumulative delay impact) of each 
timetable event can be derived from the critical cycle of a timetable. The formal 
descriptions are presented in detail in Wüst et al. [7] and Steiner [8]. 
 
 
Graph contraction  
In the context of stability analysis, graph contraction is based on the idea that first- or 
second-degree events, i.e., events with at most one incoming and/or one outgoing 
activity do not influence the system stability and thus its upstream or downstream 
activitie(s) can be removed and numerically re-linked in a suitable way. This is due to 
the assumption that the remaining entries of the recovery matrix should provide the 
same result after the described contraction. 

This approach is proposed by Goerigk and Liebchen in [9] and [10] for enabling a 
more efficient optimization of PESP problems.  
In the case of a periodic EAN, as it is considered here, there are no first-degree nodes 
(events), since each graph released for analysis must consist of a single component, 
i.e., exclusively consist of events that are accessible from each other event. This 
implicates that only second-degree events that have two neighboring activities must 
be contracted. This means that the corresponding events are removed, and their 
respective activities are linked together. At this new link, the respective process times 
are added. This contraction step is illustrated based on an example EAN. 
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3  Results 
 

The results obtained using the contraction method of [9] address two aspects, the 
performance gain and the quality of the obtained results. 
  
Performance  
The performance gain consists mainly in the reduced computation time for generating 
the stability indicators of Table 2 that is achieved by reducing the number of graph 
elements. For all calculations we used a workstation with a six-core Intel Core i7 
8700K, a maximum clock frequency of 4.70 GHz and 16 GB of RAM. All calculations 
were carried out several times. Mean values were calculated after checking for 
statistical outliers.  
 
Graph contraction and computation time 
In Figure 3 is illustrated, that the contraction method reduces the number of events 
(factor 2.5) and activities (factor of almost 3). This leads to the reduction of the 
computing time for generating the indicators from around 4000 seconds to about 100 
seconds. 50 seconds were needed for data preprocessing (contraction plus formating 
max-plus input data). 
 
Quality of results  
The quality of the results is given in terms of the absolute and relative deviation of the 
stability measures for the contracted compared to those of the original network and 
thus aims at setting the performance gain obtained by the reduction process in relation 

to the results without the use of this method. In Table 2 the critical cycles of both 
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versions are compared to each other. The length of the critical cycles represents an 
absolute quality measure. The length of the critical cycle is identical in both versions. 

 

The second quality aspect concerns the cumulative delay impact of each event. To 
achieve better comparability between the different scenarios, the CDIs were weighted 
by the number of existing events in the system. The delay impact is a relative quality 
measure for comparing the delay sensitivity of different events of a given line, rather 
than evaluating absolute values. Figure 4 shows the plots of the CDIs of train run 1125 
Chur - St. Moritz. The top plot represents the calculation without, the lower one with 
graph contraction. It can be seen how the CDIs of this train run grow in both plots 
between Tiefencastel (TICA) and Filisur (FILI). This is because in the critical cycle a 
potential delay is translated from another train run to the train run 1125 in 
Thusis(THS). These plots illustrate the good relative agreement between the two 
methods. 
 
 
4  Conclusions and Contributions 
 

The analyses presented in this paper show that by applying the graph contraction 
method, a computing time saving of 96% can be achieved on a timetable scenario of 
the magnitude of the RhB Albula corridor.  

In large scenarios, in which data preprocessing plays a rather subordinate role, the 
underlying relationship between scenario size and computing time results from the 
number of elements in a matrix of size N x N, where N is the number of events in the 
system.  

N determines the computation time of the path matrix A+ (see recovery time in 
table 1) and scales with N3.  
It has been shown that the procedure omits information on timetable dependencies 
that are not relevant for the stability of the system.  
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Besides the critical cycles the values of the cumulative delay impact of each 
timetable event have a strong practical relevance. Timetable events with a high CDI 
have strong influence on all other timetable events. Timetable planners should try to 
consider measures to increase corresponding buffer times and thus decrease the CDI 
values. In operations these events require special attention to ensure that they occur at 
the planned times and thus to prevent disruptions.  
 

 
 

 
If critical events are depending on the reliable functioning of track infrastructure, 

like for instance certain switches or safety elements, special attention must be paid to 
preventive maintenance. 

Figure 4 illustrates that these stability indicators have differently scaled absolute 
values depending on whether the contraction method is applied or not. However, there 
is a very good agreement between both methods what concerns the relative values.  
Since in practice it is more important to identify the critical events rather than knowing 
the absolute values of the overall delay impact, applying the contraction method 
satisfies this requirement. 

This makes graph contraction the recommended method for efficient timetable 
stability analyses. The effectiveness of the process depends largely on the so-called 
connectivity of the network. The method works better with lower connectivity, as such 
networks are richer in second-degree events on which the process is based.  

On the other hand, the procedure can be used for the semi- or fully automatic 
optimization of new service concepts, annual timetables or replacement timetables 
during maintenance work. 

In addition, this method can be useful for applications in which a rough but fast 
overview of the status of large systems is required. 
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