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Abstract 
 

The real-time railway rescheduling problem is a challenging task since several factors 

have to be considered when a train deviates from the initial timetable. Nowadays, the 

problem is solved by human operators, which is safe but not optimal. This paper 

proposes a novel state representation for the introduced control problem that enables 

the efficient utilization of Multi-Agent Deep Reinforcement Learning. To support our 

claim, a proof of concept network is implemented, and the performance of the trained 

agent is evaluated. The results show that our approach enables fast convergence and 

excellent performance, while the representation has the potential for solving much 

more complex networks. 
 

Keywords: Rescheduling, Railway Traffic, Multi-Agent Deep Reinforcement 

Learning, Markov Decision Process. 
 

1  Introduction 
 

The realization of automated rail traffic control is a step forward to efficient 

capacity utilization to ensure the maximum number of running trains through the 

network. Besides the costs of a newly built infrastructure, highly developed 

controlling algorithms provide a cheap alternative solution under disturbed traffic 

situations. Usually, in most countries, trains run based on a predefined timetable that 

contains the arrival and departure times for every station (with exact platforms). Every 

train has a train number that identifies a given train directly. The automated route 

setting systems use this number - stored in a database with every necessary 
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information - to provide route setting orders to the interlocking systems that ensure 

safety. These technical systems may tolerate a few minutes late - if the predefined 

path before a train is still free -, but in a case of a disturbance or a significant late, 

human operators have to make the right decision. This process means - usually - a 

rerouting and reordering task under railway company regulations to minimize the total 

secondary delay on the network. Human operators use their skills and experiences to 

find a feasible solution. They have to modify the timetable, the crossings, train 

allocations, the timetable of the connecting lines - if it is necessary. In a modern 

railway system, the human operators in the Operational Control Centres supervise the 

traffic and may remotely control the interlocking systems in possession of all the 

necessary information. 
 

Artificial Intelligence may help to solve these situations automatically. This 

technology may provide a fast solution for each train to find a conflict-free route 

through the network. MCTS based algorithms may find the best-first solution in a 

tree-based representation of the control problem [1]. Simple Q-learning algorithms 

also find the solution in a simplified infrastructure [2]. The concrete model of railway 

infrastructure - due to its complexity - makes the solution of the rescheduling task 

complicated to handle. In a Flatland model, the environment is a simplified grid 

representation [3]. In this article, a similar two grid model is used to show the 

performance in a simple station with two platforms, eight sections – signed by S – 

containing two switches, (see Figure 1.) as proof of our new concept. 

 

 
 

Figure 1: Modelled network. 
 

2  Methods 
 

Deep Reinforcement Learning (DRL) earned the researchers' attention in recent 

years for its remarkable results in several challenging domains such as Go [4], Chess 

[5], Videogames [6], Robot control [7], and autonomous driving [8]. The 

mathematical framework of DRL is constructed as a Markov Decision Process (MDP) 

<S, A, T, R>, where the agent interacts with an environment in an online manner 

(Figure 2.) and generates its training samples through these interactions. This aspect 

is one of the essential features that distinguish Reinforcement Learning from other 

fields of Machine Learning. The agent goal is to maximize the amount of the gathered 

reward during the episodes composed by single interactions. 
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Figure 2: The Reinforcement Learning training loop. 
 

In this paper, we utilize Multi-Agent Deep Reinforcement Learning (MADRL), in 

which multiple independent learners try to solve the given control problem. In the 

independent learner approach, the individual agents interpret the other agents as part 

of the environment. The mathematical framework also changes to Markov Games 

(MG) <S, N, A, T, R>. We constructed the state representation to be compatible with 

this approach. The core of the idea is that the network is interpreted as a simple grid 

word and the control problem as solving a maze, hence finding the shortest path to the 

destination. However, the problem is more complicated since there could be other 

trains in the network, which have to be considered. Consequently, the proposed state 

representation tackles these challenges. Since the network is a 2D grid world, 

Convolution Neural Networks (CNN) are utilized. Five channels describe the 

environment state for each agent. 

 Channel 1: One-hot encoded version of the network shows the walls and free 

paths. 

 Channel 2: Agent position in the grid-word. 

 Channel 3: The agent's destination. 

 Channel 4: Agents' positions that travel in the opposite direction. 

 Channel 5: Agents' positions that travel in the same direction. 
 

Thanks to this information, every agent is aware of the strategic aspect of the given 

scenario and can make a decision that does not cause conflicts in the network. There 

are five possible actions in the environment, making a step into one of the four 

directions, and the last one is waiting.  
 

The rewarding is fully cooperative. Hence the agents get a positive reward if and 

only if all the agents arrive at their destination without causing any conflicts. 

The utilized method for training the neural network is the Deep Q-Network algorithm 

that uses the Bellman Equation (1) as an update rule: 
 

𝑄(𝑠𝑡, 𝑎𝑡; 𝜃𝑡) = 𝑟𝑡+1 + 𝛾max
𝑎

𝑄(𝑠𝑡+1; 𝑎𝑡; 𝜃𝑡
−)

      (1) 
 

3  Results 
 

Every episode starts from an initial setup in the training phase. The agents' 

positions and destinations are chosen randomly to provide the algorithm with diverse 

training samples. Every episode has a maximum number of steps under which it must 
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be solved. During training, the episode terminates if the agents reach their destination, 

and when it chooses an action that triggers a conflict or is invalid, which means it does 

not step on the free path. In such a case, the agent position does not change. 
 

The decision-making for the agents is handled as a batch. Hence the neural network 

predicts the actions based on the agents' states; then, the environment receives the 

decisions for every agent in the network, executing them sequentially. The 

convergence of the algorithm is shown in Figure 3. This figure supports our claim that 

the representation is well-suited for the control problem since the convergence is fast 

and stable. The algorithm solves almost every episode at the end of the training 

process. 

 

 
 

Figure 3: The convergence of the algorithm. 
 

The performance assessment of the trained neural network is conducted in the same 

manner as the training process but with different random seeds to make sure that the 

given scenarios are truly unseen for the agent. The agent solved 100% of the provided 

episode in the evaluation phase. The detailed evaluation is shown in Figure 4. It shows 

the frequency of the number of steps needed for the algorithm to solve the test 

episodes. In one step, every agent in the network makes a decision. We also monitored 

the frequency of choosing the waiting action, which is more informative about the 

performance since it is only worth choosing if it is strategically required to avoid 

potentially conflicting scenarios. In the same 1000 episodes, the agents avoid the 

waiting action in 97.7% of the cases. In contrast, they used them once in 1.3% and 

twice 1% of the cases. 

 



 

5 

 

 
 

Figure 4: Detailed evaluation. 
 

These results show that the proposed representation enables quick and stable 

learning of the control problem with solid performance. 

 

4  Conclusions and Contributions 
 

This paper presented a Multi-Agent Deep Reinforcement Learning based solution 

for the real-time railway rescheduling problem, which was demonstrated on a simple 

railway station as proof of our new method. A novel state representation was proposed 

that supports stable and fast learning that clearly benefits the trained agent's 

performance. By assessing the proposed state representation, it can be seen that it 

carries a tremendous potential of generalization and scalability thanks to its carefully 

chosen channels. First of all, thanks to Channel 1, it is possible to change the network 

architecture during training which will end up a solution that can be flexible from the 

aspect of the network. Secondly, Channel 3 ensures that the agent does not learn to go 

to the same destination but go wherever we choose. Finally, Channel 2,4,5 carries all 

the required information to avoid conflicts in the given network. 
 

In the future, our goal is to evaluate the performance of the representation with 

much more complex networks and to complement the introduced grid word 

interpretation of the network with features that bring it closer to a real railway network 

from a simulation standpoint. We also plan to experiment with different reward 

strategies that are not fully cooperative but contain competitive aspects of the 

problem. Finally, we would like to focus our interest on possible communication and 

negotiation techniques, since in such a control problem, it can benefit the agent to 

know each other's intentions. 
 

The paper's main contribution is two-folded. First of all, a MARL-based approach 

is utilized for solving the real-time railway rescheduling problem. Secondly, a novel 

state representation is proposed to efficiently use MARL techniques for such control 

tasks where the primary purpose is to avoid deadlocks and unnecessary waiting. 
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