
1 
 

Abstract 
 
Rail pads are interposed between the steel rails and the concrete sleepers on the 
railway lines to protect the latter from the impacts induced by the passage of the trains. 
They provide compliance to the track and play a fundamental role to maximize its 
durability and minimize the maintenance costs. Rail pads can be fabricated with 
different polymeric materials that display a non-linear mechanical behavior which 
strongly depends on the external conditions. Therefore, it is extremely difficult to 
estimate its mechanical properties, in particular its dynamic stiffness. In this work, 
several machine learning algorithms (multilinear regression, K nearest neighbors, 
regression tree, random forest, multi-layer perceptron and support vector machine) 
have been optimized to determine the dynamic stiffness of rail pads manufactured in 
EPDM, TPE or EVA, depending on the in-service conditions (temperature, frequency, 
axle load and toe load). A dataset consisting of 720 stiffness tests under different 
combinations of these variables was available for the training and testing of the 
models. The optimal algorithms for EPDM, TPE and EVA were, respectively, multi-
layer perceptron (R2 of 0.990 and mean absolute percentage error of 6.51%), 
multilayer perceptron (0.994 and 2.32%) and random forest (0.968 and 4.91%). 
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1  Introduction 
 

Rail pads are elastomeric elements that are placed between the rail and the sleeper 
or the slab track and whose purpose is to provide flexibility to the track, for which 
reason rail pads are key elements in the durability and maintenance of the railway 
superstructure [1–5]. Because of their great importance, nowadays there are several 
types of commercial rail pads, and they can be made of different materials such as 
EPDM, TPE or EVA.  

These elements are not only highly non-linear and depend on a large number of 
variables such as temperature, test frequency or load values, but these variables also 
interact with each other, modifying the properties of the rail pads [6–9]. In addition, 
after a bibliographic review, it was concluded that each material has significantly 
different mechanical properties, which may vary even by an order of magnitude 
between different rail pads, although, while operating conditions affect all rail pads 
similarly, the degree to which each rail pad is affected may be substantially different. 

For the reasons explained above, it is extremely difficult to develop an empirical 
model capable of estimating the properties of these rail pads as a function of the 
operating conditions. Therefore, a machine learning model was developed capable of 
predicting the dynamic stiffness of the seat plate as a function of its operating 
conditions. The use of machine learning algorithms to predict behavior is something 
that is established and positioned in some branches of knowledge, such as medicine, 
finance, weather forecasting and in all pioneering technology companies such as 
Amazon or Google.   

In this paper we have developed a machine learning model trained with 
experimental results, that is not only capable of predicting the equivalent properties 
of a rail pad under the respective conditions of use, also it can be combined with a 
finite element model that modifies the properties of the different elements depending 
on operational conditions. 

 

2  Methods 
 

To train and calibrate the machine learning models, a large amount of data is 
required. 720 laboratory tests were performed, varying the material of the rail pad 
(EPDM, TPE and EVA), temperature (-35, -20, 0, 20 and 52 ºC), load amplitude (15.5, 
21 and 31.5), toe load (1, 9, 18 and 25) and frequency (2.5, 5, 10 and 20 Hz). Once all 
these tests were performed, 80% of the data, randomly selected, was used to train the 
machine learning model and the remaining 20% was used to test it. 

Dynamic stiffness (kdyn) tests have been conducted in the laboratory. The 
procedure followed to determine kdyn is based on the standards UNE-EN 13481-2 
[10] and UNE-EN 13146-9 [11]. The procedure consists of applying 1000 sinusoidal 
load cycles between the maximum and minimum defined values. Ten cycles of the 
last 100 cycles are selected and the dynamic stiffness value is calculated through 
Equation 1. 

𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑 =
𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚������ − 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚������
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚������� − 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚������ (1) 
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The Machine Learning models have been developed and evaluated in Python using 
the libraries Numpy, Pandas, Scikit-learn, Matplotlib and Seaborn. The dataset 
consists of 720 instances and five features: Material, frequency, load amplitude, toe 
load and temperature. The first variable, material, is categorical, i.e., it contains labels 
(‘EPDM’, ‘TPE’, ‘EVA’) rather than numeric values. Many ML algorithms cannot 
operate on categorical data but require all variables to be numeric. For categorical 
variables where no ordinal relationship exists, one-hot encoding is recommended. For 
this reason, the feature corresponding to the material was one-hot encoded before any 
calculation. 

Six different machine learnign algorithms were used to determine the model that 
best fits the rail pads behavior: Multilinear regression (MLR), K-Nearest Neighbors 
(KNN), Classification and Regression Trees (CART), Support Vector Machines 
(SVM), Random Forest (RF) and an artificial Neuronal Networks specifically a Multi-
Layer Perceptron (MLP). 

Permutation importance and feature importance techniques were used to identify 
the critical variables for each of the materials. 
 
3  Results 
 

The results are organized in two sections. First, the accuracy of the models is shown 
to determine the optimal. Then, an analysis of the importance and influence of each 
variable is carried out. 

 
Defining the best model 
 
The coefficient of determination, R2, was selected as the regression score function 

for the optimization of the hyperparameters of the algorithms. The results of R2 for 
each of the models and each of the materials are shown in Table 1. For EPDM and 
TPE R2 is over 0.99 while for EVA it is higher than 0.96. 

 
Algorithm EPDM TPE EVA 

MLR 0.452 0.759 0.928 
KNN 0.628 0.872 0.927 
RT 0.923 0.969 0.922 
RF 0.965 0.977 0.968 

MLP 0.990 0.994 0.927 
SVM 0.060 0.545 0.56 

Table 1: Statistical score (R2) in the test dataset provided by each model and 
material. 

 
The data represented in Figure 3, Figure 4 and Figure 5 illustrate the ability for 
prediction of the different ML algorithms for EPDM; TPE and EVA, respectively. 
The experimental values of stiffness are represented in the X-axis and the predictions 
of each of the regressors are shown on the Y-axis. Each graph includes a 1: 1 line 
(corresponding to a perfect fitting) as well as two confidence bands separated from 
the center line by a distance equal to the RMSE. 



4 
 

 

 
Figure 1: Comparison between the experimental and the predicted stiffness for each 

of the ML models optimized for the EPDM rail pad. 



5 
 

 
Figure 2: Comparison between the experimental and the predicted stiffness for each 

of the ML models optimized for the TPE rail pad. 
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Figure 3: Comparison between the experimental and the predicted stiffness for each 

of the ML models optimized for the EVA rail pad. 
 
Feature and permutation importance 
 
The results obtained with FI and PI are summarized in Table 2. 
 
 Feature importance Permutation importance 
 EPDM TPE EVA EPDM TPE EVA 
Temperatu
re 0.63 ± 0.07 0.69 ± 0.04 0.042 ± 

0.009 1.43 ± 0.37 1.44 ± 0.19 0.088 ± 
0.009 

Toe Load 0.31 ± 0.07 0.27± 0.04 0.81 ± 0.04 0.71 ± 0.09 0.62 ± 0.07 1.78 ± 0.21 
Frequency 0.0412 ± 

0.0009 
0.031 ± 
0.011 

0.061 ± 
0.016 0.10 ± 0.05 0.07 ± 0.02 0.124 ± 

0.002 
Amplitude 0.0160± 

0.0016 
0.011 ± 
0.007 0.08 ± 0.03 0.028 ± 

0.004 
0.016 ± 
0.006 0.15 ± 0.02 

 
Table 2: Quantitative relevance analysis parameter for each of the rail pad. 
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4  Conclusions and Contributions 
 
There is not a model at present time capable of predicting the mechanical properties 
of the rail pads according to its in-service conditions. This is not only because rail 
pads are highly non-linear elements that depend on a large number of variables such 
as temperature, axle load, toe load or frequency, but also because these variables 
interact with each other, making it difficult to build an analytical model that represents 
the behaviour of these rail pads. In this work, for the first time, a model based on 
machine learning algorithms has been developed, capable of predicting the dynamic 
vertical stiffness of three types of rail pad as a function of their operating conditions. 
 

• It has been possible to develop a model that predicts the vertical stiffness of 
three types of material rail pads better than any model previously proposed. 
• It has been proved that in all cases MLP and RF are the models that obtain the 
best correlations in the test data. 
• Both permutation importance and feature importance identify the same 
parameters as critical parameters. 
• In the case of EPDM, it has been found that the conditions that most influence 
the dynamic vertical stiffness are temperature and toe load. 
• Like EPDM, for TPE, the operating conditions that most influence the dynamic 
vertical stiffness are temperature and toe load. 
• In the case of EVA, the operating condition that most influences the dynamic 
vertical stiffness is toe load. 
• In general, the variables that most influence the vertical behavior of the rail pads 
are temperature and toe load, which are the two parameters analyzed that do not 
depend on the vehicle running on the track. 
• As a general rule, toe Load is the parameter that most influences the dynamic 
vertical stiffness of rail pad. This parameter is a parameter that the standards do 
not propose as a variable, so the standard should be revised. 
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