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Abstract 
 

In a railway infrastructure, train geographic location (e.g., GPS) must be 

strengthened to adapt to the network topology (i.e., inside or outside the station, 

straight or curved line, passages through tunnels). Alternative solutions must be 

proposed to meet this need. Computer vision is one of these disruptive answers to 

tackle this challenge. Indeed, this technology gives meaning to geographic location 

by getting closer to human behaviour (i.e., human eye). This paper presents an 

approach detecting the rails solely by computer vision and the knowledge of certain 

dimensions of the railway. A case study on rail signalling is also proposed to apply 

this approach in a safety context. 
 

Keywords: Computer vision, Railway detection, Rail signalling, Geographic 

location, Gradient analysis, Hough transform. 
 

1  Introduction 
 

In a railway infrastructure, train geographic location (e.g., GPS) must be 

strengthened to adapt to the network topology (i.e., inside or outside the station, 

straight or curved line, passages through tunnels). Alternative solutions must be 

proposed to meet this need. Computer vision is one of these disruptive answers to 

tackle this challenge. Indeed, this technology gives meaning to geographic location 

by getting closer to human behaviour (i.e., human eye). This paper presents an 

approach detecting the rails solely by computer vision and the knowledge of certain 
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dimensions of the railway. A case study on rail signalling is also proposed to apply 

this approach in a safety context. 

 

To accomplish this work, a number of concepts have been studied through the 

literature. In [1], the presented studies respectively aim to detect switch zones and 

rails. They essentially leverage preprocessing techniques such as Canny filters[2], 

Hough transform [3] and discretization [4] according to the type of lines and their 

orientations. In [5], the colorimetry is used to detect rails in the HSL colour space 

[6]. By focusing on pixels of the same row, strong variations of the H channel 

between each pixel are analysed for extracting the edge of the rails. A pixel-width 

measurement is then applied between two consecutive edges and compared with the 

real width of a lane. Another lane detection objective is proposed in [7], where 

authors mainly use the bird's flight transform by adapting a DoG mask [8] and 

maximum thresholding. Lastly in [9], a different approach focuses on local gradient 

analysis by relying on 3D projection and RANSAC algorithm [10]. 

 

The methods of the approach – called RTD (Railway Track Detector) – proposed in 

this paper are firstly presented. They take advantage of the above state of the art and 

are divided in two main stages. The first step comes to process images by filtering 

methods such as edge detection and vectorization. The second step aims to extract 

lines which characterize rails by eliminating the least relevant ones based on criteria 

such as lines slope. In next section, some results of the evaluation of RTD are 

outlined. The test dataset consists of consecutive images acquired on a same track 

section in different weather conditions. Finally, a use case is supplied to locate 

lineside signals along the train track. Some perspectives are also proposed. Figure 1 

shows an example of acquisition with a freeway signal. It will serve as an example 

throughout this document. 

 

 

Figure 1: Image containing two lanes in overcast day 

 

2  Methods 
 

This section presents the RTD which has been carried out in two stages: 
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- Selection of zone and gradient analysis 

- Selection of lines characterizing the rails 

2.1. Selection of zone and gradient analysis 

The first objective is to delineate the boundaries of the rails area in the image. Only 

a part of the image is analysed by both keeping the entire width-wise and the bottom 

third height-wise of the image. It enables to solely contain rails by removing 

catenaries. Two successive filter layers are then performed to extract pixels that are 

eligible for rail detection. 

 

For the first filter, horizontal contours and their orientations are determined. A mask 

is thus applied to discriminate pixels whose gradient values correspond to those of 

the rails, as illustrated in Figure 2. 

 

The second step comes to measure the Euclidean distance between two pixels 

located on the same y-axis. This distance is then compared with the real distance 

between the two rails of the track. The filter layer consists of both verifying that the 

measured distance is lower or equal to the reference distance and that the gradients 

have the same orientation. These two steps enable to obtain the outcome of Figure 3. 

 

  
Figure 2: Image showing horizontal 

contours by use of the Sobel filter. 

Figure 3: Result after distinction of pixels 

according to Euclidean distance and the 

orientation of gradients. 

2.2. Selection of lines characterizing the rails 

Once the pixels filtered, the objective is to determine those aligned in order to 

highlight the lines representing the rails. Hough transform (1) has been chosen to 

achieve this, where θ represents the angle between the segment (ρ) perpendicular to 

the detected line and the origin. 
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Two processing operations have been implemented on these lines. The first one 

performs a subtraction between the values of θ of two consecutive lines (considering 
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the x-axis). If the result of this operation is greater than a threshold, the two lines are 

kept (i.e., their slope is radically different). Otherwise only one of the two lines is 

kept. The second operation eliminates all horizontal and vertical lines. Figure 4 

illustrates the obtained result. 

 

 
Figure 4: Identification of the lines representing the rails 

 

3  Results 
 

For preparing the evaluation of RTD, the tracks must be distinguished by adding a 

reference point in the middle of each detected lane. 

3.1. Track center determination 

The identified lines must be ordained in order to discriminate the lanes. The way of 

proceeding lies in the calculation of intersection points between these detected lines 

and a drawn horizontal line (D). These points are derived from the parametric 

equation (1) to the Cartesian equation (2-3-4), where a and b are respectively the 

resulting slope and intercept of each calculation. 
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Each lane is then found by comparing the pixel-width distance between the x-

coordinates of two successive intersection points with the reference distance 

between two rails. To make the identification more robust, an additional check is 

carried out between two successive lines to ensure they cross each over in the image. 

Equations (5) and (6) enable this, where (xi, yi) represent the coordinates of the 

crossing point and 1 and 2 the indexes of the crossed lines.  
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Lastly, the centers of each detected track are deducted from equations (7) and (8) in 

Figure 5, where (xc, yc) corresponds to the coordinates of the middle point. yD the y-

axis horizontal line (D). xl and xr the x-coordinates of the left and right intersection 

points between the two rail lines and (D). 
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Figure 5: Identification of two tracks whose centers are illustrated by two red dots 

3.2. Tests results 

To date, RTD has been developed in a nominal case. Face to the topologic 

complexity of the infrastructure, the function has solely been designed for tracks in 

straight line. Two track section videos framed in 125 consecutive images formed the 

test dataset. These videos were acquired from the driving cabin at approximately a 

rate speed of twenty images per second, with different weather conditions. Table 1 

clearly shows a better accuracy in sunny conditions (i.e., 97%) than in overcast 

conditions (i.e., 56%).  

 

This is because the extraction of the features that characterize the rails is not enough 

in the second case. Indeed, gradients describe less local variation since grey levels 

are less contrasted.  

 

 Weather Number 

of images  

Number 

of bad 

detections 

Section 1 Sunny 125 4 

Section 2 Overcast 125 55 

Table 1: Summary of the evaluation 
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4  Conclusions and Contributions 
 

One of the objectives intended by RTD is to reinforce the train geographic location. 

It is necessary to offer an alternative solution for tackling the inappropriateness of 

existing devices in certain situations. For instance, the use of GPS can, on the one 

hand, lack precision from track to track and, on the other hand, be unsuccessful in 

areas where the network is not covered by GPS. These situations can consequently 

be unsafe, especially when the position of a moving train supports the rail signalling. 

The challenge is considerable and presents an ambitious work program. For the sake 

of simplicity and to evince a keen interest in further development of this solution, a 

concrete use case has hereafter been targeted to complete this experiment. As given 

in Figure 6, this implementation focuses on cropping a ROI - Region Of Interest - 

(i.e., the whitened area in the image) along the left train track for detecting lineside 

signals.  

 

 
Figure 6: Implementation on lineside signals recognition 

 
The coordinates of the ROI are made through the identification of the middle of the 

detected lane in green. The advantage of this processing is the reduction of the 

execution time since only the ROI is analysed by the recognition function. In 

addition, this strategy prevents from obtaining potential false positives outside the 

ROI. 

 

This work is a first encouraging stage despite the inconsistency of the results of the 

section 2.2. The assessment of RTD has indeed indicated bad detections, in 

particular in overcast conditions. This means that sometimes the track can be lost 

and then the ROI cannot be cropped. More research needs to be conducted to make 

RTD more relevant. 

 

To deal with the variability of the weather conditions, a calibration function is 

currently being studied to set up the RTD preprocessing. The parameters of the 

filters will have to be adjusted automatically to the specific conditions. 
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Nonetheless, tracks could still not be detected. To address this issue, an idea of 

tracking the ROI throughout the acquisition section is in progress. The recognition 

area would then be maintained once the track is missed. 

 

To go further, RCD must be able to also extract curved rails to better follow the 

track profile and thus cover more use cases by providing a more robust detector. 

Among these cases, this consolidation could for example prevent or confirm the 

orientation of the train after detecting track changes in a context of station traffic. 
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