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Abstract 
 

Under complex underground environment, earth pressures on many in-service tunnel 

structures have far exceeded values expected in design stage, leading to severe 

structural diseases. Identification of the pressures on these structures is the basis for 

digital monitoring, residual capacity estimation, and health assessment of them. Here, 

a statistical inversion approach is proposed to identity the current earth pressures on 

tunnel structures based on the easily observed deformation data. To deal with the well-

known non-uniqueness and ill-conditioning issues in a load inversion problem, this 

approach is based on Bayes’ theorem to obtain the complete posterior probability 

densities (PPD) of inversion results. Accordingly, non-uniqueness is recognized and 

quantified by the PPDs, based on which ill-conditioning can also be flattened by a 

statistical integration. Numerical cases are carried out to test this approach in detail 

and future extensions are discussed in the last. 
 

Keywords: Inverse problem; Statistical inversion; Load identification; Tunnel 

structure. 
 

1  Introduction 
 

Identification of external loads on structures is vital for in-service structures [1], 

especially for those large-deformed tunnel structures, on which the earth pressures 

have far exceeded values expected in design stage due to the complex service 

environment [2]. 
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As tunnels are buried in the ground, direct measurement of the external loads by 

measuring devices is rather difficult [3]. That is, sensors are unavailable to be installed 

if they weren’t pre-embedded during the pouring period, let alone the huge cost of 

large-scale sensor installation. Alternatively, inversion of the load pressures based on 

easily observed structural response, say deformation, is a more desirable.  
 

Shown in Equation (1), forward problems compute the structural response given a 

specific load condition: 

d=C(q)             (1) 

where d is a vector of deformation data, q is a vector of load pressures, and C is a 

forward mapping function. On the contrary, inversion problems estimate the load 

condition on structures given a set of observed structural response. Previous 

researches tried to inverse Equation (1) directly (Equation (2)) or find a best fitted 

solution by minimizing a loss function in a deterministic way (Equation (3)) [3−5]: 

q=C−1(d)            (2) 

q=minq||d−C(q)||r          (3) 

where ||.||r indicates the rth-order norm of a vector. However, for load inversion 

problems, two major issues are ill-conditioning and non-uniqueness of solutions [6].  

That is, a slight error in the observation can lead to a large bias in the solution due to 

the large condition number of C (ill-conditioning); and vastly different solutions 

usually give rise to similar structural responses (non-uniqueness). Regularization 

techniques were further introduced [4−5]. To penalize undesired components by 

imposing regularized constraints on the solution space, a best-fitted, unique, and 

smooth solution can be obtained. However, in practical cases, it is difficult to tune a 

suitable regularized factor (constraint), which deeply relies on researchers’ 

experiences [7]. In comparison, non-uniqueness is recognized in statistical inversion 

and quantified by probability densities (PDs). Additionally, the ensemble of feasible 

solutions, with corresponding PDs, are jointly used for further engineering decision, 

which can be more robust than a potential ill-conditioned solution in deterministic 

inversions [8]. However, few researches have been conducted on statistical inversion 

of load pressures for underground structures. 
 

Here, a statistical approach for load inversion on in-service tunnel structures is 

proposed which aims to deal with ill-conditioning and non-uniqueness issues in the 

inversion process.  
 

2  Methods 
 

This approach is based on Bayes’ theorem to obtain the posterior probability densities 

(PPDs) of the load pressures by incorporating the likelihood function and prior 

distribution. As shown in Figure 1, parameterization and numerical sampling are pre-

processing and post-processing steps for the Bayes’ theorem, respectively. 
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Figure 1: Flowchart of this approach. 
 

 Parameterization: The unknown pressures must be represented 

mathematically before inversion. Here, linear interpolation (Equation (4)), 

interpolated by n evenly-distributed unknowns x=(x1,…,xn) in a polar coordinate, is 

adopted to represent the unknown pressures q (Figure 2). That is, any shape of 

pressures can be fitted with appropriate values of x. Accordingly, inversion of 

unknown pressures has been transferred into inversion of unknowns x. 

q=Ipx            (4) 

see the derivation of matrix Ip in [9].  
 

 

Figure 2: Parameterization of unknown pressures, (a) polar coordinate; (b) unfold 

view. 
 

 Bayes’ theorem: Inference of x is based on Bayes’ rule given observed data d: 
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p(x|d)=p(d|x)∙p(x)∙k−1           (5) 

where p(x) is the prior distribution of x, p(d|x) is the likelihood function, and k is the 

normalizing factor. 
 

Prior distribution: The prior represents ones’ prejudgments on the unknowns 

before measuring the data. It is often the case that one knows little about x. Thus, a 

weakly-informative prior, i.e., uniform distribution is adopted, indicating that every 

values has equal probability within a pre-defined bound before inversion. 
 

Likelihood function: The likelihood measures how well a set of given parameter 

values can give rise to the observed data, determined by e: 

e=C(x)−d            (6) 

according to the Central Limit Theorem, a zero-mean Gaussian distribution is 

typically assumed for e, and we get: 

p(d|x)=Nσexp[−||e||2/(2σd
2)]        (7) 

where Nσ is a constant, σd is the estimated variance of the data noise. 
 

Forward model: For a tunnel structure, the well-known finite element method 

can be adopted: 

C(x)=K−1f=K−1LEq=K−1LEIpx        (8) 

where K is the global stiffness matrix, and f is the equivalent nodal forces, equivalent 

to the pressures q with the matrix LE based on virtual work. Derivation of K and LE 

for a Euler beam can be seen in [10]. 
 

The sampler: In the absence of analytical solution (Equation (5)), a practical 

way to obtain the posterior is Bayesian sampling. Markov Chain Monte Carlo 

(MCMC) is an iterative method to generates samples to reach the PPDs. As the 

forward model for tunnel structures can be computationally intensive, a more efficient 

version of MCMC, called DREAM, is adopted. See the details in [11]. 
 

3  Results 
 

A numerical example is presented. Referring to [3], the earth pressures (Figure 3) 

were assumed to act on a tunnel lining. Under the pressures, deformation data were 

computed based on a 2-D elastic beam model (Equation (8)). Accordingly, the goal is 

to inverse the actual pressures (assumed unknown now) based on the observation in 

Figure 3(b). 
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Figure 3: Numerical example, (a)assumed pressures; (b)deformation data. 
 

22 evenly-distributed parameters x=(x1,…,x22) parameterized the unknown 

pressures. A uniform prior is adopted for xi~Uniform(0,1000) (i=1,…,22). Different 

cases (Table 1) were run simultaneously, in which some observations were 

contaminated by noises. For necessary comparison, deterministic inversions were also 

run for every cases based on the rule of Equation (3).  
 

Cases Inversion approach Noise 

Case1 
Statistical 

0 
Deterministic 

Case2 
Statistical 

1%Gaussian noises 
Deterministic 

Case3 
Statistical 

5%Gaussian noises 
Deterministic 

Case4 
Statistical 

10%Gaussian noises 
Deterministic 

Table 1: Cases for testing this approach (i=1,…,22). 
 

Markov chains were run to estimate the PPDs. Results of our approach for Case1 

are shown in Figure 4(a). The inferences (PPDs) of pressures at any points on the 

structure are presented by different colours: hotter colours indicate higher probability. 

Intuitively, for example, at angle 0◦, 60◦, and 120◦, inference of values of pressures are 

presented by the PPDs, respectively in Figure 4(b). 
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Figure 4: Results for case1, (a)PPDs; (b)examples for PPDs. (AP=actual pressure; 

PM=posterior mean; DI=deterministic inversion, same for figure 5). 
 

All the potential values of the pressures are recognized while our confidence on 

the values are quantified by PPDs. Non-uniqueness is recognized in statistical 

inversion and quantified by the PPDs, suggesting a different view of inference from 

deterministic inversions. Noting that the actual pressures are bounded by hot areas. In 

addition, the posterior means (PM), which are the integration of all potential solutions 

based on PPDs, fit perfectly with the actual pressures indicating effectiveness of our 

approach. Certainly, deterministic inversion also did a great job in the no-noise case. 
 

When slight noises were added in the observation (Figure 5), ill-conditioning 

occurs in the results of deterministic inversion. In comparison, PM fit relatively well 

with the actual pressures. Although the fit is getting worse with the increase of noise 

level, it performs far better than solutions in deterministic inversion, suggesting its 

power to deal with ill-conditioning. 
 

 

Figure 5: Results (a)case2; (b) case3; (c) case4. (AP=actual pressure; PM=posterior 

mean; DI=deterministic inversion). 
 

4  Conclusions and Contributions 
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A statistical inverse approach for load identification on in-service tunnel structures is 

proposed in this paper. With this approach, load identification on tunnel structures can 

be conducted based on the easily observed deformation data rather than unavailable 

measuring devices. 
 

This approach is based on statistical inversion, which suggests a new view of 

inference that is different from deterministic inversions. That is, every potential 

solutions is recognized in the inversion process and the confidence on different 

solutions is quantified by probability densities. It suggests that this approach 

recognizes and quantifies non-uniqueness and encourages one to make further 

engineering decision based on probability. 
 

The posterior means integrate the ensemble potential solutions based on the 

corresponding probability densities. This statistical averaging process flattens 

unstable features of any individual solutions, and is proved to be powerful to deal with 

ill-conditioning in an inversion process. At least the numerical examples show that 

under 5% Gaussian noises (maximum value of 4 mm in absolute terms, which is quite 

large in practice), a relatively good inversion result can still be obtained by this 

approach. 
 

It is noted that the forward model for the numerical cases are chosen as 2-D 

elastic beam, which can underestimate the structural response in reality and lead to 

unacceptable errors in the inversion results in practical cases. As a result, more 

complex forward model, considering the geometric and material nonlinearity, should 

be introduced in the near future. 
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