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Abstract 
 

This paper proposes a novel technique to identify rail surface defects using laser 

triangulation optoNCDT 2300-10LL. Two defect types, squat and flaking, are 

artificially applied on the surface of a rotary steel ring setup. Various supervised 

binary classification algorithms are implemented, and their performance in defect 

identification are compared against each other. Linear classifiers, Support Vector 

Machine (SVM) and Linear Discriminant Analysis (LDA), are observed to be the 

most performant. The results also show that in spite of 2-dimensional longitudinal 

measurement, the collected sensory data can be used effectively to detect defects and 

potentially be extended to other types along with consideration of multiclassification.   
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1  Introduction 
 

Maintenance of rails is a relevant topic which has a significant influence on the costs 

of the rail transportation system. Magel [1] describes the technical implications of 

rolling contact fatigue (RCF) and how to deal with the defects from detection to 

removal. Fedorko et al. [2] emphasize the safety implications of rail defects for 

operation. The EN 13231-5 [3] standard classifies rail surface defects that can be 

removed by reprofiling the rail. To date, it is often necessary to rely on human-based 

monitoring of the rail condition as described. It is, therefore, of relevant interest to 
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develop systems that allow automated monitoring of the rail condition. Liang et al. 

[4] have developed a system for automated rail defect detection based on the 

application of CCD industrial cameras. Ye et al. [5], instead, have developed a 

methodology based on a 2D laser signal to create a 3D model of the surface. In other 

approaches, as used by Afzalan et al. [6], recorded acceleration data from the train is 

used and deep learning to detect rail defects. Instead of using acceleration data, it 

would be possible to directly measure a longitudinal profile of the rail with a laser 

triangulation sensor from the train and thus directly obtain information about defects 

and their dimensions (length and depth). In this study, artificially created rail surface 

defects on laboratory test bench are to be detected automatically using the signal of a 

laser triangulation sensor. As described by Kuffa et al. [7], the setup is used in a 

slightly modified form. Machine learning techniques are applied for defect detection. 

For this purpose, an experimental setup in the laboratory is used, which includes a 

steel ring clamped on a vertical lathe as an artificial rail. The rail surface defects 

Flaking and Squats are introduced as artificial defects on the ring surface. It is 

investigated which classifier is suitable for this specific application and to what extent 

the structure can be transferred to an application on a train. 
 

2  Methods 
 

The experimental setup is shown in Figure 1.  

 
Figure 1: Setup to detect artificial defects. 

 

The structure's base is a steel ring (58CrMoV4), which is clamped on the rotary table 

of a vertical lathe. A turned facet width 𝑤 of the ring which serves as an artificial rail 

surface is approx. 10 − 12 𝑚𝑚. The diameter 𝑑𝑅 of the ring is 2 𝑚. The rotary table 
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is set in rotation at a speed 𝑣 of 1.6 𝑟𝑝𝑚 (~ 0.6 𝑘𝑚 ℎ−1). Speeds of up to 80 𝑟𝑝𝑚 

(~ 30.16 𝑘𝑚 ℎ−1) would be technically possible to simulate faster driving speeds. 

Artificial defects are manually introduced with tools onto the ring surface. A selection 

of the defects introduced is shown in Figure 2.  

 

 
Figure 2: Manually implemented artificial defects on the ring surface. 

A total of 81 defects distributed around the circumference of the ring were 

implemented (36 artificial squats, 45 artificial flaking defects). The defect 

interpretations are shown in Figure 2. For the purpose of defects identification, the 

vertical lathe is equipped with a laser triangulation optoNCDT 2300-10LL sensor 

from Micro-Epsilon Messtechnik attached to the vertical lathe’s tool connection. The 

signal 𝑑𝐿 of the sensor is measured in the range from −10 𝑉 to 10 𝑉 and a sampling 

ratio 𝑓𝑆 of 30 𝑘𝐻𝑧. The data point distance is ∆𝑥 = 56 𝜇𝑚. Figure 3 shows the 

workflow overview of the study, from data collection to defects detection.  
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Figure 3: Workflow of the study. 

An NI 9222 module in a cRIO-9045 from National Instruments (NI) was used for 

data acquisition. The data is filtered by a second-order Butterworth filter, and outliers 

were removed in advance. Then, the processed data is used for supervised binary 

classification with manually assigned labels of “damaged” and “undamaged”. In 



4 

 

order to label and train models, 66 % of the total dataset is used as a training dataset, 

and 34 % is used for evaluation. Initially, 13 statistical features are used, which are 

reduced to eight after a dimensionality reduction via principal component analysis 

(PCA). Figure 4 includes the list of all features ranked based on the correlation with 

the labels.  

 
Figure 4: Ranked statistical features based on the absolute value of Pearson's 

correlation coefficient with regard to. 

 

Different trained models are compared with each other: 

 Linear & radial basis function (RBF) Support Vector Machine (SVM) 

 Linear Discriminant Analysis (LDA) 

 K-Nearest Neighbour (KNN) 

 Gaussian Process 

 Decision Tree 

 Random Forest 

 Artificial Neural Network (ANN) 

 Adaptive Boosting (AdaBoost) 

 Gaussian Naïve Bayes 
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3  Results 
 

The data-set is biased towards the defective label. Accuracy is not a reliable 

performance parameter. Instead, precision and recall, respectively the combination of 

both efficiency parameters, the F-score are used for comparison. Table 1 gives an 

overview of the results (precision, recall & F-Score) of the trained models. 
 

Classifier Precision Recall F-Score 

 [%] [%] [%] 

Linear Support Vector Machine (SVM) 82 86 83.95 

Linear Discriminant Analysis (LDA) 87 95 90.82 

Radial Basis Function (RBF) Support Vector 

Machine (SVM) 
69 99 81.32 

K-Nearest Neighbour (KNN) 3 100 5.83 

Gaussian Process 4 100 7.69 

Decision Tree 2 100 3.92 

Random Forest 3 100 5.83 

Artificial Neural Network (ANN) 3 100 5.83 

Adaptive Boosting (AdaBoost) 3 100 5.83 

Gaussian Naïve Bayes 5 100 9.52 

Table 1: Precision, Recall and F-score for different models. 

 

Non-linear models show desirable properties for the recall of 100 % for the precision, 

on the other hand, only low values below 5% can be achieved. If both values are 

combined to the F-score, values between 5.83 % and 9.52 % are obtained. An 

exception is a support vector machine based on a radial basis function. This model 

achieves a value of 99 % for recall and a value of 69 % for precision, which 

combined results in an F-Score of 81.32 %. Linear models show the best results in 

precision with 82 % for the linear support vector machine and 87 % for the linear 

discriminant analysis. This results in an F-score of 83.95 % and 90.82 %, 

respectively. It is shown that the linear discriminant analysis outperforms the linear 

support vector machine by approximately 7 %. The different implemented artificial 

defects show a low correlation among each other. The correlation reaches a maximum 

of 1 %, indicating a poor linear correlation. Based on this value, it would be possible 

to perform a multi-classification with the implemented artificial defects 

 

4  Conclusions and Contributions 
 

It was shown that a binary classification, whether a defect or no defect is present, is 

generally possible with the recorded data of a longitudinal profile. With the artificial 

defects implemented, it would theoretically be possible to perform even a multi-

classification. Linear classifiers predominantly outperform non-linear classifiers. 

When comparing the F-score, the linear discriminant analysis approach outperforms 

the linear support vector machine by approximately 7 percentage points. It is 

recommended to use the linear discriminant analysis approach to detect defects within 
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a recorded length profile. This study is based on the detection of artificial defects and 

differences are to be expected when applied to the actual railway network and new 

training of the classifiers will become necessary. In addition, only a limited number 

of artificial defects could be applied to the ring. More data would therefore be 

desirable for better training. Since a longitudinal profile was recorded, it may be 

difficult in reality to record every defect since the hunting motion of the train was not 

considered in this study. Nevertheless, it can be assumed that a significant amount of 

defects could be recorded in order to make a statement about the condition of the rail 

segment. The proposed approach should be compared to the widely tested concept of 

capturing image data to compare the performance. Furthermore, a combination of 

both approaches seems to make sense. For example, it may be advantageous to 

evaluate the dimensions of the defect in the surface via recorded image data, while 

the depth of the defect can be determined via the laser sensor. 
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