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Abstract 
 

Rail track deterioration models are integral components of rail infrastructure 

maintenance management systems. In particular, track geometry defects are one of 

the leading causes of train accidents. Also, control, management, and modification of 

geometric conditions are one of the most important tasks of railway maintenance 

management systems. Track geometry data such as profile, alignment, gauge, cross-

level, and twist constantly change over time. Therefore, these features have the 

characteristics of time series data.  
 

In this study, a large database from outputs of EM120, a track recording machine, 

was provided for the years 2009 to 2020 and for all 19 railway zones of Iranian 

Railways (approximately 14,000 km of railway track and 100 GB of data).  

From Deep Learning techniques, CNN, LSTM, and CNN-LSTM models were 

selected to predict track geometry degradation. Long short-term memory (LSTM) has 

the advantage of analysing relationships among time-series data through its memory 

function, while CNN models may filter out the noise of the input data and extract 

more valuable features that would be more useful for the final prediction model. By 

integrating convolutional neural networks (CNN) with long short-term memory 

(LSTM), a CNN-LSTM model is considered to be more accurate and can make better 

point-wise predictions. 
 

The models were built from the average segments of 100 and 200 meters. The 

forecasting results of proposed models were analysed and compared, and the CNN-
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LSTM model with a segment length of 200 m and sequence length of 6 reported the 

best forecasting performance, achieving an R-squared value of 0.913. 

 

Keywords: Railway track degradation, Deep Learning, Track geometry index, Track 

recording machine (EM120). 

 

1  Introduction 
 

Railway track deterioration occurs over time as the track is used and ages, although it 

can be slowed down with maintenance [1]. In order to optimize maintenance, an 

estimation of the track degradation is necessary [2]. Modelling and predicting track 

geometry degradation is a complex task based on track geometry indicators using 

track geometry parameters such as profile, alignment, gauge, cross-level, and twist. 

Track geometry parameters are measured by track geometry cars and could be used 

for identifying rail track irregularities, defects, and structural problems [3]. Due to the 

significant impact of track condition evaluation on making efficient maintenance 

decisions, using an appropriate track geometry indicator has always been a 

considerable challenge in predicting track degradation. 
 

Track degradation modelling can be categorized into three main approaches: 

mechanistic, stochastic, and artificial intelligence (AI) models. Over the past decades, 

researchers have used different track geometry indices to represent the track condition 

and evaluated their efficiency in prediction models. The inability of mechanistic 

models to deal with uncertainty in track degradation modelling led them to statistical 

and AI models, which are characterized by having to handle large amounts of 

geometric data and input variables [4]. Statistical models are used to estimate a set of 

parameters from a large sample of data, where the data fit a specific distribution. 

However, without a mechanical background, the results may be unreliable [5]. While 

AI models provide an enhanced capability to solve complex problems without prior 

knowledge and produce more accurate estimations, their decision-making process is 

not transparent. In artificial intelligence fields, Machine Learning (ML) and Deep 

Learning (DL) seek to train a model to learn complex features from data collected and 

observed, but large amounts of data must be provided [6]. When using ML, features 

should be extracted manually and a classifier selected. In a track degradation problem, 

feature extraction can be using track geometry indices as the input of these models. In 

contrast, DL models are trained using large datasets that do not need to be manually 

extracted and are usually more effective as the size of the dataset increases [7]. 
 

Accordingly, DL algorithms such as Convolutional Neural Networks (CNNs), 

Long-Term Memory (LSTMs), and an ensemble structure of CNN-LSTM are created 

and analysed, using track geometry to develop railroad degradation models. 

 

2  Methods 
 

CNN models contain convolutional and pooling layers designed to filter the input data 

and extract useful knowledge to be used as inputs in a fully connected network layer, 
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and since CNN was developed to extract features from images, the input data requires 

matrix structures.  
 

LSTM networks are a subset of recurrent neural networks (RNNs) designed to 

solve long-term dependency problems such as exploding and vanishing gradients by 

storing useful information on memory cells and vanishing unnecessary information, 

thus providing better performance than a classic RNN. Each LSTM unit consists of a 

memory cell maintaining its state over time and three nonlinear gates, input, output, 

and forget gate, that manage data flow into and out of the cell. 
  

Based on similar studies, the CNN–LSTM model contains two main components, 

first convolutional and pooling layers, which extract complex features of the input 

data, and then LSTM layers exploit the generated features and capture sequence 

pattern information due to their architecture design. Tables 1, 2, and 3 show the CNN, 

LSTM, and CNN-LSTM architecture and parameter settings in this study. 

 

Parameters Values 

Sequence length 3 4 5 6 

Convolutional layer 1 filters 32 64 64 64 

Convolutional layer 1 kernel size 1 

Max pooling Layer 1 kernel size 1 

Convolutional layer 2 filters 32 32 32 64 

Convolutional layer 2 kernel size 1 

Max pooling Layer 1 kernel size 1 

Fully connected layer units 10 

layers activation function relu 

Dropout layer rate 0.2 0.2 0.2 0.25 

Learning Rate 0.003 

epochs 120 

Table 1: CNN model Parameters. 

 
Parameters Values 

Sequence length 3 4 5 6 

LSTM layer 1 units 64 128 128 128 

Dropout layer 1 rate 0.2 0.2 0.25 0.3 

LSTM layer 2 units 64 64 64 128 

Dropout layer 2 rate 0.2 0.2 0.25 0.3 

Fully connected layer units 10 

LSTM layers activation function tanh 

Learning Rate 0.001 

epochs 150 

Table 2: LSTM model Parameters. 
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Parameters Values 

Sequence length 3 4 5 6 

Convolutional layer filters 32 64 64 64 

Convolutional layer kernel size 1 

Max pooling Layer kernel size 1 

LSTM layer 1 units 64 128 128 128 

Dropout layer 1 rate 0.2 0.2 0.25 0.25 

LSTM layer 2 units 64 64 64 64 

Dropout layer 2 rate 0.2 0.2 0.25 0.25 

Convolutional layer activation function relu 

LSTM layers activation function tanh 

Learning Rate 0.002 

epochs 130 

Table 3: CNN-LSTM model Parameters. 
 

3  Results 
 

The CNN, LSTM, and CNN-LSTM models were constructed to predict track 

geometry degradation, and all the deep learning models were implemented using 

Keras and Scikit-learn libraries. The dataset contains outputs of EM120, a track 

recording machine, and the necessary pre-processing was performed on it. These 

algorithms learned (or tested) the time series data for twelve years from 2009 to 2020 

and for all 19 railway zones of Iranian Railways (approximately 14,000 km of railway 

track and 100 GB of data), and the sequence lengths usable for optimizing the 

algorithms were chosen 3, 4, 5, and 6. For each model, the dataset was randomly 

divided into 20% test data and 80% training data, of which 20% were considered for 

validation data. In order to evaluate the forecasting effect of models, mean square 

error (MSE) and R-square (R2) are used as the evaluation criteria of the methods. 

Tables 4, 5, and 6 show the results of the CNN, LSTM, and CNN-LSTM railway track 

degradation predictions. 

 

Sequence 

 length 

Segment 

 length 
R2 

MSE 

(val_loss) 

MSE 

(loss) 
Dataset 

3 
100 0.752 6.73E-04 6.77E-04 1048578 

200 0.758 4.63E-04 4.72E-04 524289 

4 
100 0.755 4.90E-04 4.95E-04 1028578 

200 0.766 6.39E-04 6.47E-04 514289 

5 
100 0.781 3.62E-04 3.65E-04 1003178 

200 0.792 4.40E-04 4.41E-04 501589 

6 
100 0.782 3.33E-04 3.37E-04 925324 

200 0.795 3.56E-04 3.59E-04 462662 

Table 4: Performance of the CNN models. 
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Sequence 

length 

Segment 

length 
R2 

MSE 

(val_loss) 

MSE 

(loss) 
Dataset 

3 
100 0.821 3.62E-04 3.89E-04 1048578 

200 0.837 3.67E-04 3.69E-04 524289 

4 
100 0.824 3.94E-04 3.99E-04 1028578 

200 0.845 3.98E-04 4.01E-04 514289 

5 
100 0.880 3.37E-04 3.41E-04 1003178 

200 0.903 3.60E-04 3.63E-04 501589 

6 
100 0.862 3.76E-04 3.81E-04 925324 

200 0.897 3.66E-04 3.69E-04 462662 

Table 5: Performance of the LSTM models. 

 

Sequence 

length 

Segment 

length 
R2 

MSE 

(val_loss) 

MSE 

(loss) 
Dataset 

3 
100 0.829 3.40E-04 3.71E-04 1048578 

200 0.837 2.05E-04 2.04E-04 524289 

4 
100 0.826 2.27E-04 2.27E-04 1028578 

200 0.848 3.76E-04 3.83E-04 514289 

5 
100 0.872 2.14E-04 2.13E-04 1003178 

200 0.902 1.99E-04 2.01E-04 501589 

6 
100 0.898 1.70E-04 1.73E-04 925324 

200 0.913 1.93E-04 1.94E-04 462662 

Table 6: Performance of the CNN-LSTM models. 

 

4  Conclusions and Contributions 
 

For the purpose of predicting railway track degradation, CNN, LSTM, and CNN-

LSTM algorithms were implemented using track geometry data and from the average 

segments of 100 and 200 meters. In all models, the 200 m segments provided better 

performance than the 100 m segments, which is probably due to the fact that the 

smaller segments are more sensitive to degradation and have a greater rate of change. 

Generally, in the case of the window size of a time series in a prediction problem, a 

smaller window size requires a simpler architecture, which results in less overfitting. 

In addition, using less historical data is more desirable. According to the results, 

models performance generally improved by increasing the length or size of the time 

series window. In the CNN and CNN-LSTM algorithms, models with a sequence 

length of 6 reported the best forecasting performance, and with a slight difference, 

LSTM models with a sequence length of 5 had a better performance. This difference 

could be caused by the increased probability of changes due to maintenance activities 

on the railway track. 
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Respectively, CNN-LSTM, CNN, and LSTM models performed better and 

achieved a better prediction, while in terms of learning time, the CNN models were 

much faster than CNN-LSTM and LSTM models. It is likely that the combination of 

the feature extraction property of CNNs with the ability to analyse the 

interdependence of time series data in LSTM models resulted in an improvement in 

performance for CNN-LSTM models. 
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