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Abstract 
 
The railroad tracks are frequented by thousands of rolling stocks every day. 
Depending on the type of the rolling stocks (fret, passenger, etc.) and the 
corresponding conveyed weight, the different parts of railroad tracks are under a 
constant stress. In recent years, thanks to the technological advances, more data are 
collected using automatic inspections of railroad tracks and infrastructure and have 
been acquired by the French National Railroad Company (SNCF). In this article, the 
objective is to analyse the fatigue crack propagation on subsurface of rails (squat 
defects) with the aim to avoid the potential rail fractures. As a considerable amount 
of data is provided in this work, we propose the use of data-driven techniques for 
prediction of the evolution of crack lengths over time. These models have the 
advantage of considering a number of influent factors in the modelling unlike the 
mechanical models, e.g., infrastructure and traffic related factors, climatic variables, 
etc. However, the calibration of the hyperparameters of data-driven models is of 
utmost importance. We have conducted an analysis to study the effect of 
hyperparameters on the predictive capacity of models. Finally, a number of state-of-
the-art machine learning techniques are evaluated for the prediction of fatigue crack 
length and their performances are compared. The neural network based models obtain 
the promising results and could be investigated in more depth in future works. We 
give also some insights of models which consider temporal dependency between 
observations.  
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1  Introduction 
 

The railroad tracks are frequented by thousands of rolling stocks every day. 
Depending on the type of the rolling stocks (fret, passenger, etc.) and the 
corresponding conveyed weight, the different parts of railroad tracks are under a 
constant stress. This could initiate the apparition of cracks on the surface (headcheck 
defects) or subsurface (squat defects) of rails which evolve very fast over time.  In the 
most extreme case, a fracture can happen which cause not only a heavy economic 
impact (delayed trains, maintenance cost), but also threaten the passenger safety 
(derailment). To avoid such situations, the French National Railroad Company 
(SNCF) performs a strict method with both corrective and preventive maintenance 
strategy which implies a significant cost for the company.  

 
Many studies have been carried out to analyse the fatigue behaviour in mechanical 

fields [1] [2] [3]. These models being slow, their use is restricted to small-scale 
railroad networks. Furthermore, such models could not consider exogenous contextual 
factors which may have an impact on the evolution of crack propagation.  

 
In recent years, thanks to the technological advances, more data concerning the 

crack propagation and contextual factors are obtained from automated inspections. 
This allows the use of data driven models to study the evolution of fatigue crack 
growth. A recent study has used the extreme Gradient Boosting algorithm to predict 
the broken rail rate [4]. The neural networks are also used for prediction of track 
structural defects [5]. 

 
In this article, we are interested in predictive maintenance strategy using data-

driven techniques. The contribution of this paper can be summarized as below: 
  
• Considering various available factors which may have an impact on the 

evolution of crack propagation, e.g. infrastructure-based variables (curvature, 
rail profile, etc.), climatic variables (temperature), traffic-related information 
(gross tonnage, number of passing cars). A crossing between the 
heterogeneous information is performed for each rail segment (using kilometre 
point); 

• Extraction of relevant features such as the rail age, the duration after the first 
detected defect and cumulative temperature, which show a high correlation 
with fatigue propagation;  

• Benchmarking the state-of-the-art statistical models (Random Forest, Gradient 
Boosting) and deep neural networks with the aim to select the best performed 
model for prediction of crack length over time; 

• As the fatigue crack growth are represented by temporal series of crack lengths 
(in mm), we have also studied the models that consider the temporal 
dependency between consecutive observations, i.e., Markov models and 
Recurrent Neural Networks.  
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2  Methods 
 
The main objective of this article is to benchmark and compare various state-of-the-
art data-driven models with the aim to select the best performed technique for 
prediction of fatigue crack propagation. We are in supervised machine learning setting 
where each method requires a set of (X, y) pair of data for learning. Where X 
represents a vector of available features and y represents corresponding ground truth 
crack propagation value. In this study, the data gathering procedure is performed from 
2013 to 2018 with variable frequency.  
 
The set of features can be categorized in following groups: infrastructural features 
which are mainly static over time (nominal velocity of trains, curvature, rail material 
and profile, etc.), the traffic data which is represented by the tonnage of rolling stocks 
for each segment of the railroad network and is also static, climatic data including the 
temperature from 2013 to 2018 with daily and monthly frequency, and finally each 
considered railroad segment is supervised with variable frequency and the crack 
propagation measure (crack length in mm) is reported with the corresponding dates 
which is a time series data. 
 
It should be mentioned that a huge work of data preparation is also performed to be 
able to conduct this analysis. As each above-mentioned information is recorded and 
reported separately, they have been crossed at the rail track segment level. The 
anomalies such as inconsistencies in crack propagation are identified and removed 
with the aim to avoid to introduce some bias into the models. Furthermore, some 
important features are also extracted to improve the learning convergence and to 
obtain the better predictions, which are the age of the rail segments and the duration 
after the first detected defect (this helps to consider the irregular time interval into 
models).  
 
 

 
(a) Classic strategy 

 
(b) Leave-k-out sequence cross validation 

Figure 1 Experimental settings. Each horizontal rectangle presents a sequence of 
observations (crack length over time) and each color represents a specific partition 
of data. 

We consider also two different ways to evaluate the performance of the previously 
mentioned approaches. The first approach (see figure 1a) consists in dividing each 
sequence into three partitions, where 60% of each sequence is dedicated for training, 
20% for validation and 20% for testing. We have also experimented a shuffled version 
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of this first approach where the temporal nature of data is neglected. The second 
approach (see figure 1b) consists in partitioning by sequence. To do this, we have 
considered 60% of sequences for training, 20% for validation and 20% for testing. It 
should be mentioned that the validation dataset is used for fine-tuning and the test 
dataset has never been observed during the training phase.  
 . 
3  Results 
 
We have considered two different features set for evaluation of previously mentioned 
approaches. A first set includes only the features coming directly from the available 
datasets, and the second set adds the extracted features ε to the first set comprising 15 
features. In these preliminary results, we have considered the first experimental 
configuration that has been mentioned in previous section which does not consider 
the temporal nature of observed data. All the methods are fine-tuned such as to select 
the set of best hyper-parameters.  
 
Concerning the Multi-Layer Perceptron neural network, we have demonstrated the 
convergence curves for two different set of hyperparameters in Figure 2. A first set 
chosen randomly (3 hidden layers with 20, 40 and 20 neurons, batch size=128 and 
number of epochs=100) and the second obtained after fine-tuning (3 hidden layers 
with 50, 100 and 50 neurons, batch size=32 and number of epochs=300). It can be 
seen that the MSE loss (logarithmic scale) has been reduced significantly using the 
fine-tuned set of hyperparameters.  
 

 
(a) Random set of hyperparameters 

 
(b) Fine-tuned hyperparameters 

Figure 2 Convergence with respect to hyperparameters 

 
The evaluation results are shown in Table 1. In this table, the best performances are 
highlighted in bold for each evaluation criteria. Two statements could be concluded 
from this table. First, the combination of original features with the extracted ones 
improve significantly the performances of all the methods. Second, the neural 
network based approach outperforms the traditional approaches for the regression 
task regarding all the evaluation criteria. An example of predictions for 100 different 
observations is also shown in Figure 3b. This encourages the study of more 
complicated architectures which may improve still the performance by considering 
the temporal dependencies among observations.  
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Table 1 Comparison table. The evaluated methods are: Random Forest (RF), Gradient 
Boosting (GB), Multi-layer perceptron (MLP). The evaluation criteria are: Mean 
absolute error (MAE), Mean Squared error (MSE), Root Mean Squared Error (RMSE) 
and Normalized Root Mean Squared Error (NRMSE).  

Approaches Features Evaluation criteria 
MAE MSE RMSE NRMSE 

RF X 14.42 342.85 18.52 0.21 
X + ε 12.01 249.75 15.80 0.20 

GB X 13.17 290.88 17.06 0.17 
X + ε 11.73 235.27 15.34 0.16 

MLP X 14.61 351.26 18.74 0.25 
X + ε 11.43 234.21 15.30 0.11 

 
Although, the neural network based algorithms show outstanding performances 
recently in many domains, their black box nature does not allow to analyse the impact 
of the input features on the response variable. It is of the utmost importance for rail 
network operators to identify this impact to be able to select the right action or still to 
improve the materials used with respect to specific regions. In Figure 3a, we can see 
the impact of different variables on the fatigue crack propagation. It can be seen that 
the extracted feature, i.e., duration after the first detected defect (DAPD) is the most 
important feature as the cracks propagates very fast, once they are initiated. The 
frequency and tonnage of the rolling stocks show also some impacts.   
 

 
(a) Feature importance 

 
(b) Predictions using MLP 

Figure 3 Feature importance obtained using Random Forests in (a) and predictions vs. 
ground truth crack lengths in (b) 
 

4  Conclusions and Contributions 
 
In this article, we have compared various data-driven models for the prediction of 
fatigue crack propagation. Different strategies have been considered for the 
evaluation of methods to verify their generalization capacity on unseen data. It has 
been shown that the use of extracted features helps to improve significantly the 
performance of the evaluated approaches. On the basis of Random Forest analysis, 
the duration after the first detected defect (DAPD) was the most important variable 
and the tonnage of rolling stocks show important impact on the crack propagation. 



6 
 

The analysis highlighted the superiority of neural network based method over 
traditional machine learning algorithms.   
 
We are currently working to add more complex techniques in the experimentation 
which allow to consider the temporal dependency of crack propagation series in 
modeling. One approach from probabilistic domain that we would like to experiment 
is based on Markov chains [6] and the other one is based on recurrent neural networks. 
The Markov chains are shown in Figure 4 for multiple sequences z and input vectors 
u, and is based on the hypothesis that the current state (time T) depends only on the 
last observed state (time T-1).  

 
 Figure 4 Joint hidden Markov models 

Concerning the recurrent neural networks (see Figure 5), multiple variants exist, e.g., 
LSTM [7], GRU [8], etc. As an example, the LSTM model will allow to consider long 
term dependencies through a memory cell. In our case, the sequence lengths and the 
number of measurements per sequence differs from one sequence to another 
depending on inspection frequency per rail segment. Furthermore, the exogenous 
factors could be classified into two groups: temporal (temperature) and static inputs 
variables (traffic and infrastructure). These models should be adapted to consider the 
variable length sequences and also the two groups of exogenous factors.  
 

 
Figure 5 Modelling the fatigue crack propagation using Recurrent Neural Network  

As a perspective for future investigations, we aim to use recent explicability tools, 
e.g., Lime or SHAP, to analyse the influence of input features on crack propagation 
when using neural networks. Furthermore, the data-driven approaches could be 
combined with mechanical models to build a “hybrid model” that takes advantage of 
both. More precisely, as the hybridation result, the fatigue crack propagation could be 
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classified as critical for a given time stamp, and a maintenance operation like rail 
grinding or rail replacement should be performed.   
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