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Abstract 
 

Dynamics of railway tracks have been studied for a long time. Many authors 

proposed analytical or numerical models to compute the dynamic response of the 

tracks. Numerical models often use the track periodicity to reduce the size of the 

problem. Among these numerical methods, the Wave Finite Element (WFE) method 

was designed to compute the dynamics of periodic structures composed of identical 

patterns. It was successfully applied t simplified models of railway tracks subjected 

to different types of loads. In these studies, tracks are modelled by periodically 

supported beams. In order to give access to stresses and strains at a fine scale, a much 

finer representation is needed. This article presents a WFE computation of the 

dynamics of a ballastless railway track subjected to constant moving loads. In the 

presented computation, the rail, the underlying slab and the support system are all 

represented in three dimensions. In order to validate this method, the obtained results 

are compared to experimental strain measurements. 
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1  Introduction 
 

Dynamics of railway tracks have been studied for a long time. Several authors 

proposed analytical [1] models for this purpose. In these studies, tracks are modelled 

as periodically supported beams. Other authors developed numerical methods which 

take advantage of the track periodicity [2, 3]. 

 

Among these methods, the Wave Finite Element (WFE) method has been widely 

used to compute the dynamics of periodic structures and waveguides. This numerical 

method consists in reducing the dynamics of each spatial period (called pattern) to 

wave equations at its boundaries. Then, the kinematic and mechanical fields of the 

whole structure can be found by computing the amplitude of the waves travelling in 

the structure main direction. 

 

Hoang et al. [4] successfully used the Wave Finite Element (WFE) method to 

compute the response of a homogeneous railway track subjected to constant moving 

loads. Claudet et al. [5] developed a method based on the WFE method to compute 

the response of railway tracks transition zones. Both Hoang et al. and Claudet et al. 

modelled a railway track by a periodically supported beam and the supports with 

mass-springs-dampers systems connected to fixed points. These simplified models 

can give global 

results with very low computational time and strong agreements with analytical 

models. However, because of their simplicity, they can't give access to some values, 

such as stresses or strains, at a fine scale. 

 

In this article, the WFE method is applied to the computation of the response of a 

ballastless railway track subjected to a constant moving load. In the computation 

performed, a fine three-dimensional model is used to represent the track. This model 

includes the rail, the support system and the underlying slab. A comparison with 

experimental strain measurements validates the proposed method. 

 

After this introduction, the numerical WFE method will be presented. Then, the 

numerical results obtained will be compared with the experimental measurements. 

The last section will present the conclusion of this work.  
 

2  Methods 
 

An infinite periodic structure composed of identical patterns is considered. The 

WFE method reduced the computation of the dynamics of the structure to a wave 

problem at one boundary of one of its patterns as follows. 

In the frequency domain, for every pattern (𝑛), the following equilibrium 

relationship can be written: 

�̃�𝐪(𝑛) = 𝐅(𝑛) (1)  

Where 𝐪(𝑛) contains the nodal displacements of the pattern (𝑛), 𝐅(𝑛) its nodal forces 

and �̃� its stiffness matrix. 
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Let's note with subscripts 𝐼, 𝐿 and 𝑅 the components respectively corresponding to 

the inner, left and right boundaries nodes. Eliminating the displacement of the inner 

nodes, the reduced equilibrium relationship is found: 

[
𝐃𝐿𝐿    𝐃𝐿𝑅
𝐃𝑅𝐿    𝐃𝑅𝑅

] [
𝐪𝐿
𝐪𝑅
] = [

𝐅𝐿
𝐅𝑅
] − [

𝐃𝐿𝐼𝐅𝐼
𝐃𝑅𝐼𝐅𝐼

] (2) 

Where, 

𝐃𝐿𝐿 = �̃�𝐿𝐿 − �̃�𝐿𝐼�̃�𝐼𝐼
−1�̃�𝐼𝐿    𝐃𝐿𝑅 = �̃�𝐿𝑅 − �̃�𝐿𝐼�̃�𝐼𝐼

−1�̃�𝐼𝑅
𝐃𝑅𝐿 = �̃�𝑅𝐿 − �̃�𝑅𝐼�̃�𝐼𝐼

−1�̃�𝐼𝐿    𝐃𝑅𝑅 = �̃�𝑅𝑅 − �̃�𝑅𝐼�̃�𝐼𝐼
−1�̃�𝐼𝑅

𝐃𝐿𝐼 = �̃�𝐿𝐼�̃�𝐼𝐼
−1    𝐃𝑅𝐼 = �̃�𝑅𝐼�̃�𝐼𝐼

−1

 (3) 

Let 𝐮(𝑛), the vector containing the forces and displacements at the left boundary of 

the pattern (𝑛), be defined as follows: 

𝐮(𝑛) = [
𝐪𝐿
(𝑛)

−𝐅𝐿
(𝑛)
] (4) 

Using the continuity of the structure at the pattern boundaries, Hoang et al. proved 

the propagation relationship : 

 

𝐮(𝑛+1) = 𝐒𝐮(𝑛) + 𝐛(𝑛) (5) 
Where, 

𝐒 = [
−𝐃𝐿𝑅

−1𝐃𝐿𝐿 −𝐃𝐿𝑅
−1

𝐃𝑅𝐿 − 𝐃𝑅𝑅𝐃𝐿𝑅
−1𝐃𝐿𝐿 −𝐃𝑅𝑅𝐃𝐿𝑅

−1]

[
𝐃𝑞𝐼
𝐃𝑓𝐼

] = [
−𝐃𝐿𝑅

−1𝐃𝐿𝐼
𝐃𝑅𝐼 − 𝐃𝑅𝑅𝐃𝐿𝑅

−1𝐃𝐿𝐼
]

𝐛(𝑛) = [
𝐃𝑞𝐼𝐅𝐼

(𝑛)

𝐃𝑓𝐼𝐅𝐼
(𝑛) − 𝐅∂𝑅

(𝑛)
]

(6) 

As the vector 𝐮(𝑛) gives the state of the pattern (𝑛), this equation traduces the 

propagation of the wave from one pattern to the next one. 𝐒 can be seen as a 

propagation matrix and 𝐛(𝑛) gives the effect of the loading applied on the pattern. 

Then, from the propagation relationship, the following system of equations is 

obtained. This system reduces the computation of the whole structure dynamics to the 

computation of 𝐮(0) . 

{
 
 

 
 𝐮(𝑛) = 𝐒𝑛𝐮(0) +∑  

𝑛

𝑘=1

𝐒𝑛−𝑘𝐛(𝑘−1)

𝐮(−𝑛) = 𝐒−𝑛𝐮(0) −∑  

𝑛

𝑘=1

𝐒−𝑛+𝑘−1𝐛(−𝑘)

(7) 

The eigenvalues and eigenvectors {𝜇𝑗, 𝜙𝑗}𝑗of 𝐒 are used to compute 

the power of the matrix 𝐒. They follow: 

𝐒𝜙𝑗 = 𝜇𝑗𝜙𝑗 (8) 
The computation of this eigenvalue problem is prone to numerical difficulties (see 

[6]). To overcome them, we use the 𝐒 + 𝐒−𝟏 transformation proposed by Zhong and 

Williams [7]. 
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The eigenvalues come in pair (𝜇𝑗, 𝜇𝑗
⋆) with ∥∥𝜇𝑗∥∥ ⩽ 1 and 𝜇𝑗

⋆ =
1

𝜇𝑗
 (see [8]). The 

corresponding eigenvectors are noted (𝜙𝑗 , 𝜙𝑗
⋆). We define the eigenbasis {𝚽  𝚽⋆} 

as: 𝚽 = [𝝓𝟏…     𝝓𝒏] and 𝚽⋆ = [𝜙1
⋆…𝜙𝑛

⋆]. 𝚽 corresponds to the modes propagating 

to the right and 𝚽⋆ to those propagating to the left. 

 

By a condition of non-divergence at infinity, one can show: 

𝐮(0) = 𝚽∑  

+∞

𝑘=1

𝝁𝑘−1𝐐𝐸
(−𝑘) +𝚽⋆∑ 

+∞

𝑘=0

𝝁𝑘+1𝐐𝐸
⋆(𝑘) (9) 

Hoang et al [8] give the formulas to compute the wave amplitudes 𝐐𝐸
(𝑛)

, 𝐐𝐸
⋆(𝑛)

. 

Computing 𝐮(0) with the last equation gives the dynamics of the whole infinite 

structure. 

 

3  Results 
 

This section presents some results obtained with the WFE method for a ballastless 

railway track subjected to a constant moving load. The results are then compared to 

experimental strain measurements. 

One pattern of the structure is modelled in three dimensions using the finite element 

software Abaqus. The geometry includes the rail, the underlying concrete slab and the 

support system which connects the rail to the slab. The geometry and mesh obtained 

are shown in Figure 1. The mesh and the mass, damping and stiffness matrices 

obtained are exported to Matlab where the WFE computation is conducted. At each 

frequency, the dynamic stiffness matrix is computed from the mass, damping and 

stiffness matrices. The structure is subjected to constant moving loads which represent 

the loads applied by eight wheels moving on the rail at a constant speed. 

 
Figure 1: Cross-sectional view of the geometry and mesh of one pattern. 

Table 1 gives the parameters used in this computation. The physical parameters 

correspond to the values measured on the ballastless track of the Channel Tunnel. 
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Table 1: Computation parameters. 

The WFE computation gives the displacements of the nodes of all the patterns in 

the frequency domain. An inverse Fourier transform is performed to obtain temporal 

values. Because of Matlab graphical limitations, the three-dimensional results are 

plotted using Paraview. By a spatial derivation, Paraview is able to compute the strain 

in the structure. This strain is plotted in Figure 2 at a given time. 

 
Figure 2: Cross-sectional view of the strain in the track. 

To validate these results, a strain gauge was glued on one rail in the Channel 

Tunnel. In Figure 3, the simulated strain is compared to the measured strain. Although 

the measured strain shows some experimental noise, a good agreement is found 

between experimental and numerical values. 
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Figure 3: Comparison between computational results and experimental 

measurements for the longitudinal strain in the rail. 

4  Conclusions and Contributions 
 

Railway tracks under traffic can be modelled as infinite periodic structures 

subjected to moving loads. The Wave Finite Element (WFE) method can be used to 

compute the dynamics of these structures. This method is based on a reduction of the 

problem of the computation of the periodic structure dynamic response to a wave 

problem at a boundary of one of the structure patterns. Intrinsically including the 

infinite nature of the structure, this reduction can make numerical computations of 

finely represented complex structures affordable. 

The WFE method had already been successfully applied to the railway domain for 

simple one-dimension models of the track. These models can't give access to stresses 

and strains at a fine scale. In this article, a three-dimensional fine model is used to 

represent a ballastless railway track. In this model the rail, the support and the 

underlying slab are all represented in three dimensions. To validate the results 

obtained with the Wave Finite Element method, a strain gauge was glued to a rail in 

the Channel Tunnel. The results obtained show a strong agreement with on-site 

measurements. 

In ongoing studies, the authors are working on this type of computations to model 

railway transition zones with the same amount of details. An optimization process is 

also conducted to improve the method efficiency. 
 

Acknowledgements 
 

This work is supported by the CHAIR ”Science for Rail Transport” funded by 

GETLINK Group. 



 

7 

 

 

References 
 

[1] Maria A. Heckl. Coupled waves on a periodically supported Timoshenko beam. 

Journal of Sound and Vibration 2002. 

[2] E. Arlaud, S. Costa D'aguiar, and E. Balmes. Receptance of railway tracks at 

low frequency: Numerical and experimental approaches. Transportation 

Geotechnics 2016. 

[3] E. Fortunato, A. Paixão, and R. Calçada. Railway Track Transition Zones: 

Design, Construction, Monitoring and Numerical Modelling. International 

Journal of Railway Technology 2013. 

[4] T. Hoang, D. Duhamel, G. Foret, J.L. Pochet, and F. Sabatier. Wave finite 

element method for the dynamic analysis of railway tracks. In 13th World 

Congress on Computational Mechanics 2nd Pan American Congress on 

Computational Mechanics 2018. 

[5] B. Claudet, T. Hoang, D. Duhamel, G. Foret, J-L. Pochet, and F. Sabatier. Wave 

Finite Element Method for Computing the Dynamic Response of Railway 

Transition Zones. COMPDYN 2019. 

[6] Y. Waki, B. R. Mace, and M. J. Brennan. Numerical issues concerning the wave 

and finite element method for free and forced vibrations of waveguides. Journal 

of Sound and Vibration 2009. 

[7] W.X. Zhong and F.W. Williams. On the direct solution of wave propagation for 

repetitive structures. Journal of Sound and Vibration 1995. 

[8] Tien Hoang, Denis Duhamel, and Gilles Foret. Wave finite element method for 

waveguides and periodic structures subjected to arbitrary loads. Finite Elements 

in Analysis and Design 2020. 




