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Abstract 
 

Controlling the energy consumed by our systems has turned to be an important stake 

in today’s world and especially in the railway domain, since transports constitute one 

of the largest energy consumers. In the railway sector, the energy consumed by high-

speed trains depends on many variables such as the vehicle characteristics, the rolling 

environment of the train, or its speed profile. To limit the impact of the latter, drivers 

are asked to follow a target trajectory defined by crossing points along the journey. 

Nevertheless, we can remark that important differences in energy consumption still 

exist. The industrial objective of this work is to define a model, able to describe the 

train dynamics and to propose an optimization method, which aims to minimize the 

energy consumption under uncertainties. 
 

This work is composed of two parts. First of all, two probabilistic models are 

defined to describe the train longitudinal dynamics (based on a Lagrangian approach) 

and its energy consumption. This model is fitted using a Bayesian calibration  from 

measurements carried out on commercial trains. Particular attention is paid to the 

description of the rolling environment of the train and of the vehicle characteristics. 

Afterwards, the robust optimization of the command under uncertainty is performed 

using the CMA-ES method to minimize the energy consumed while punctuality, 

security, and comfort constraints are respected. 
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On the scientific point of view, this work has enabled the development of original 

methods to introduce non-linear physical and punctuality constraints in a probabilistic 

framework by means of order relations. The driver's command is chosen as the 

optimization variable instead of the train speed, as it is often the case in literature. It 

facilitates the transposition of the developments to real systems. In addition, many 

energy measurements are used to calibrate and validate the models. The rolling 

environment and the vehicle characteristics are carefully defined from existing case 

study. To conclude, algorithms are developed for the robust optimization of the 

problem including uncertainties on both objective function and constraints. 
 

Keywords: High-speed train dynamics, Bayesian inference, Optimization under 

constraints and uncertainty. 
 

1  Introduction 
 

Reducing the energy consumption has turned to be an important stake in today’s world 

and particularly in the railway sector, since transports constitute one of the largest 

energy consumers. For this reason, the railway companies pay close attention to the 

energy consumption from the design to the recycling phase, especially the 

maintenance and the exploitation processes. Recently, controlling the energy has 

become even more crucial because of the growing demand stemming from the 

increase of the trains’ frequency, as well as their speed. To achieve this objective, 

three levers can be activated: modify the rolling environment, the vehicle 

characteristics, or the speed profile. The present work focuses on the speed profile 

optimization of trains because important variations of energy consumption have been 

noticed for different drivers with the same vehicle and equivalent rolling conditions. 
 

Trains evolve in a complex network and their speed profile should not be 

determined erratically. Effectively, reducing or increasing the speed of a train may 

have an impact on other journeys. To limit this impact, drivers are asked to follow a 

target trajectory defined by crossing points along the journey. Nevertheless, we can 

remark that differences in energy consumption still exist. For this reason, optimizing 

the driver’s command appears to be an important challenge for the railway companies. 
 

This project is also motivated by the active development of autonomous trains, for 

which the driver is going to be replaced by robust algorithms. The optimal solution 

may be used as a nominal target trajectory for autonomous trains, to minimize the 

energy consumed along the journey. It can be brought into play by modifying the 

target trajectory in case of specific rolling conditions. 
 

2  Methods 
 

The present work focuses on the optimization of trains’ speed. This latter must fulfil 

several constraints. One reason is that it has to assure the passengers' security by 

respecting the speed limitation on the track; these constraints are called the security 

constraints. The second reason is that the train must arrive in the train station at a 

specific time and a given position with an appropriate speed; these are called the 
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punctuality constraints. Finally, the passengers should not be subjected to violent 

accelerations or jolts; these conditions are regrouped in the comfort constraints. 

Consequently, the project can be summarized mathematically as an optimization 

problem under deterministic non-linear constraints. 
 

 However, the speed profile of the train is driven by its longitudinal behaviour on 

the track. The optimization supposes thus to construct accurate physical models to 

describe on the one hand, the train longitudinal dynamics and on the other hand its 

energy consumption. But the train behaviour is difficult to predict in a perfect way, 

because of the great sensitivity to its environment. Despite a relatively fine modelling 

of the track, the wind, and the vehicle, the slightest uncontrolled disturbance can 

modify the whole dynamic behaviour of the train. Moreover, a lack of knowledge 

limits the precision of the models because some quantities of the mechanical system 

are not well known or may vary. For example, masses depend on the ridership, 

aerodynamic loads and wheel-rail contact conditions depend on the weather, 

stiffnesses and dampers may be damaged, etc. A probabilistic model is thus 

introduced to include the uncertainties inherent to the system. This framework 

modifies the cost function and the constraints, which become random variables, and 

appropriate order relations need to be established to handle the uncertainties. 
 

 In this work we have also decided to optimize the driver’s command rather than 

the speed trajectory. This should facilitate the implementation of the algorithms on 

autonomous trains. Finally, the problem consists in optimizing the driver's command 

to minimize the mean value of the energy consumed, integrating the longitudinal 

dynamic behaviour of the train, and respecting the set of probabilistic constraints. 
 

 The optimal speed trajectories are ultimately compared to the experimental traffic 

flow and so the estimated energy savings will be discussed. 
 

3  Results 
 

Our approach is to build models of the train's longitudinal dynamics (from a 

Lagrangian formalism) and its energy consumption [1]. The train behaviour is 

carefully modelled and adapted to the case study. Particular attention is paid to the 

definition of the traction, the pneumatic, and the dynamic braking capacities that can 

restore a part of the energy consumed. Moreover, the track characteristics are 

introduced thanks to measured declivity and curvature. The amplitude and direction 

of the wind are defined due to the predictions of the Meteo France, providing a good 

description of the rolling environment. 
 

A sensitivity analysis is then carried out to identify the parameters that have a large 

impact on the models. The magnitude of the model error and the distributions of the 

important parameters are estimated thanks to a Bayesian formalism [2]. The a priori 

distributions are built using the available physical knowledge (mean, variance, 

support). The likelihood function is defined from a set of power and speed 

measurements performed on commercial trains (see [3] for details). Finally, the 

application of a Markov Chain Monte Carlo (MCMC) method [4], the Metropolis-

within-Gibbs algorithm [5], allows us to access to the a posteriori distributions. 
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Figure 1: Energy computed by the models in function of time. 

 

The mean (resp. 5% quantile interval) of the energy consumed from realizations of 

the posterior distributions is represented as the black solid line (resp. blue envelop). 

The green envelop stands for the 5% quantile interval for which the error is added. 

The energy measurements are plotted in a red dotted line. The local energy 

distributions of the posterior and error model are plotted at three different times. 
 

 Ultimately, a robust optimization method under uncertainty is achieved to estimate 

the deterministic driver's command, which minimizes the mean value of the energy 

consumed. To do so, the Covariance Matrix Adaptation - Evolution Strategy (CMA-

ES) algorithm [6] is used by introducing the uncertainties as a form of noise applied 

to the cost function. 
 

 
Figure 2: Speed (left) and energy consumed (right) by the optimal solution in 

function of position. 
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The optimal mean (resp. 5% quantile interval) is represented as a solid black line (resp. 

grey envelop). The starting point of the algorithm is plotted as a green line and the 

measurement as a red dotted line. The blue line stands for the speed limitation. 
 

4  Conclusions and Contributions 
 

This work presents several originalities. First of all, a special effort is made to ensure 

that the longitudinal dynamic model is representative. The errors are carefully 

modelled, and the parameters are calibrated thanks to energy measurements carried 

out on real high-speed trains. This guaranties a good representation of the real system. 

This set of measurements also allows the comparison of the optimal solution with real 

journeys. The uncertainties are examined through a Bayesian calibration. It allows to 

represent the variability of the measurements, the model errors, and the lack of 

knowledge on several physical parameters. Thus, the models constructed are general 

representations of the real system and they are adapted to the multiplicity of possible 

configurations. 
 

 On the scientific point of view, this work has enabled the development of original 

methods to introduce non-linear constraints in a probabilistic framework by means of 

order relations. The driver's command is chosen as the optimization variable instead 

of the train speed, as it is often the case in literature. It facilitates the transposition of 

the developments to real systems. In addition, algorithms are developed for the robust 

optimization of the problem including uncertainties on cost function and constraints. 
 

 According to the obtained results, it seems that the method is efficient. Indeed, the 

probabilistic model has been validated, as it is able to consider the uncertainties from 

different rolling conditions. The optimization method allows us to reduce the energy 

consumed of 25%. In case of non-perturbed journeys, this speed profile can be 

implemented on trains, as the algorithm directly returns the optimal traction and 

braking commands. Soon, by giving the optimal speed profile to drivers as an 

extension to the existing crossing points, they can achieve an energy saving trajectory. 
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