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Abstract 
 

High dynamic forces at railway switches and crossings (S&C) are the primary cause 

of frequent defect formation. Regular acquisition of onsite sensory data aids condition 

evaluation or maintenance planning, which subsequently mitigates problems of 

unexpected malfunction of S&C components. Accelerometer data collected by in-situ 

sensors in UK and Czech Republic were used in this research for defining important 

metrics and validating prediction models. A number of metrics can be calculated from 

collected signals to provide information about the condition of S&C and its 

components. Change of these parameters over time is revealed by trend analysis and 

may signalize increased material deterioration or formation of a defect. Trend analysis 

methods span from simple regression to more advanced machine learning models for 

time series prediction and are listed in this paper. Evaluation of proposed models is 

performed on collected data, and validation metrics are discussed. This paper provides 

a baseline for the development of a S&C condition monitoring system and overviews 

techniques for analysis of large amounts of data collected by automatic sensory 

systems. 
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1  Introduction 
 

Discontinuities introduced by railway switches and crossings (S&C) result in 

increased dynamic forces and frequent defect formation. Condition monitoring system 

based on a regular onsite collection of sensory data from passing trains provides an 

opportunity to predict defect occurrence or plan maintenance which ultimately 

increases safety and reduces costs, especially for high-speed tracks [1]. Several 

metrics can be calculated from collected signals to provide information about the 

condition of S&C and its components [2]. Change of these parameters over time is 

revealed by trend analysis and may signalize increased material deterioration or 

formation of a defect. 

Trend analysis methods span from simple regression to more advanced machine 

learning models for time series prediction. The machine learning approach benefits 

from a large amount of data collected by automatic onsite sensors. Support vector 

machines (SVM) are traditionally used as baseline model [3]. A more complex 

approach includes specialized types of neural including long-short term memory 

networks (LSTM) or auto-encoders (AE) [4]. Ensemble of multiple machine learning 

models provides a more robust solution, especially for diverse data [5]. The trend line 

can also be used to estimate remaining useful life (RUL) and maintenance 

planning [6]. 

Two datasets of in-situ measured accelerometer data were selected. Dataset I 

contained tri-axial acceleration signals measured near the common crossing of S&C 

by the Brno University of Technology. It consisted of 27 train passages from one 

location in the Czech Republic. Known locomotive types included classes 150, 151, 

162, 163, 350, 362 and 363, which were selected due to their mutual similarity to 

reduce the data variability. Machine learning models can identify concrete locomotive 

types provided sufficient training data [7]. Dataset II was obtained at a location in the 

UK around swing nose and was supplied by the University of Birmingham. The 

schematic of the measurement configuration is shown in Figure 1. It contained records 

of vertical acceleration signals from 598 trains from class 395, 374, 373 highspeed 

trains and some freight vehicles. 
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Figure 1: Schematic of sensor locations near swing nose used to collect dataset II 

This paper evaluates different metrics with regard to their applicability to trend 

analysis and fault detection. Metrics are selected with respect to train dynamics within 

S&C to provide descriptive value. Fundamental trend analysis and regression models 

are introduced to serve as a baseline for further research and development of a S&C 

condition monitoring system. 
 

2  Methods 
 

Several metrics can be calculated from the measured accelerometer signal in order to 

evaluate changes in the S&C dynamic response over time. Measured data can be 

analyzed either in the time domain or in the frequency domain to reveal different types 

of issues. Some of the common signal analysis methods were adjusted for railway 

application to consider its specific phenomena. The following list summarizes the 

selected evaluation metrics: 

i. Umax: Maximal absolute amplitude calculated according to equation 

𝑈𝑚𝑎𝑥 = max(|𝑦|) 

ii. RMS: Root mean square, which is a square root of the mean square 

calculated according to the equation 𝑅𝑀𝑆 = √
∑|𝑦|2

𝑛
 

iii. CF: Crest factor is a ratio of maximal amplitude and root mean square 

according to equation 𝐶𝐹 = 𝑈𝑚𝑎𝑥/𝑅𝑀𝑆 
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iv. PtP: Peak to peak value, which is a difference between maximal and 

minimal amplitude in the signal. 𝑃𝑡𝑃 = max(𝑦) − min(𝑦) 

v. Ea/b: A ratio of signal energy 𝐸 = ∑|𝑦|2 between two directions  

𝐸𝑎/𝑏 = 𝐸𝑎/𝐸𝑏. It can be viewed as the angle of wheel impact on the 

crossing nose. A triaxial accelerometer must be used to enable this metric. 

Three combinations exist: X/Z, Y/Z, X/Y, where X is longitudinal, Y is 

transverse, and Z is a vertical direction. 

vi. fmean: Frequency mean weighted according to power at each frequency 

calculated in the whole frequency spectrum. Equation: 𝑓𝑚𝑒𝑎𝑛 =
∑ 𝑃𝑓𝑖𝑓𝑖
𝑛
𝑖

∑ 𝑃𝑓𝑖
𝑛
𝑖

 

vii. fmean,P1: Frequency mean weighted according to power at each frequency 

calculated in the frequency range 200-1000 Hz, which corresponds to P1 

force (hard impact) according to Jenkins, et al. [8]. Equation: 

 𝑓𝑚𝑒𝑎𝑛,𝑃1 =
∑ 𝑃𝑓𝑖𝑓𝑖
𝑖=1000
𝑖=200

∑ 𝑃𝑓𝑖
𝑖=1000
𝑖=200

 

viii. fmean,P2: Frequency mean weighted according to power at each frequency 

calculated in the frequency range 50-200Hz, which corresponds to P2 force 

(soft impact) according to Jenkins, et al. [8]. Equation:   

 𝑓𝑚𝑒𝑎𝑛,𝑃2 =
∑ 𝑃𝑓𝑖𝑓𝑖
𝑖=200
𝑖=50

∑ 𝑃𝑓𝑖
𝑖=200
𝑖=50

 

ix. fstd: Frequency standard deviation weighted according to power at each 

frequency calculated in the whole frequency spectrum. It can also be 

calculated in the P1 and P2 frequency ranges. Equation:     

 𝑓𝑠𝑡𝑑 = √
∑ 𝑃𝑓𝑖

|𝑓𝑖−𝑓𝑚𝑒𝑎𝑛|2
𝑛
𝑖

∑ 𝑃𝑓𝑖
𝑛
𝑖

 

Calculated metrics enable comparison between subsequent train passages and can be 

evaluated for short-term anomalies or long-term trend analysis to predict defect 

formation and plan maintenance. Besides the assumed probability distribution, the 

seasonal variation must be considered  [9]. A regression line is fitted to the datapoints 

minimizing the distances defined by the least square error (MSE): 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦)2
𝑛

𝑖=1

 
(1) 

Coefficient of determination R2 describes the amount of variability of the dependent 

variable explained by the variability of the independent variable and is another metric 

used for the evaluation of regression models: 

𝑅2 = 1 −
∑(𝑦𝑖 −

1
𝑛
∑𝑦𝑖)

2

∑(𝑦𝑖 − �̂�𝑖)
2

 
(2) 
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3  Results 
 

The conducted experiments considered two datasets. A locomotive part of the 

accelerometer signals was extracted and metrics were calculated. Correlation between 

some metrics is relatively high, so only the independent metrics should be selected for 

composition of the feature vector for trend analysis models. 

 
Figure 2. Correlation between selected evaluation metrics (dataset I) 

Variation of calculated metrics is higher due to the unknown locomotive type in 

dataset II. Assuming that distribution of locomotive type is constant in time and the 

overall trend is not affected. A general trend can be identified despite a high variation 

of subsequent passages. A sudden shift in the metrics can be seen between 27.2.2018 

and 4.3.2018. An increasing R2 score can be observed for higher-order polynomials, 

but the extrapolation shape may not be ideal. 
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Figure 3. Trend analysis on crest factor (CF) using regression lines (dataset II) 

The ratio of signal energy between different directions forms a descriptive 

parameter for trend evaluation. In the case of dataset I, with similar locomotive types, 

this parameter exhibits an increasing trend over time, especially for the ratio between 

X and Y directions. Variation due is rather low and monotonous trend occurs in all 

three ratios. 

 
Figure 4. Trend analysis based on energy ratios between different acceleration 

directions (dataset I) 
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A long-term trend was also analyzed for dataset II. A linear regression model was 

fitted to the training datapoints spanning from 18. to 26.2.2018. The MSE was 

minimized to the value of 0.3729. Validation data 27.2. to 4.3.2018. MSE of the 

regression model increased to 1.8292, which is almost five times larger compared to 

the training dataset. 

 
Figure 5. Example of long-term trend analysis using linear regression on dataset II. 

A trend change can be seen between historical and new data. 

Training and testing intervals were selected intentionally to demonstrate MSE or 

similar metrics as a decision method. Newly measured datapoints can either 

recalibrate the trend analyzing model or notify the infrastructure operator. Placing a 

limit to moving standard deviation can detect the same anomaly. In the case of a 

sudden change of observed values, the moving standard deviation increases. The 

damage highlighted by Figure 6 was found to be the weakening support stiffness of 

the bearer. 
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Figure 6. Example of short-term anomaly detection on dataset II using moving 

standard deviation with a window of size 30. A sudden change of this parameter 

detects outliers in the measured data. 

 

4  Conclusions and Contributions 
 

Preliminary results on the limited datasets demonstrated a technique of transforming 

measured accelerometers signals into a set of metrics that can be analyzed for both 

long-term trends and short-term anomalies. Possible options were discussed, 

including different prediction models and validation metrics for the detection of 

changes in the measured data. 

Contrary to long-term analysis, a short-term evaluation of measured data can 

contribute to anomaly detection such as sensor malfunction or urgent problems in 

S&C. Anomalies may also be considered outliers; therefore, it is crucial to distinguish 

between short-term defects and noise to prevent false alerts. Seasonality in data must 

also be considered as a signal can be decomposed into its periodic and non-periodic 

parts. In the case of accelerometer measurements, the periodicity may be caused by 

temperature changes 

It was also demonstrated that large variability of input data results in a problematic 

evaluation of proposed models. Identification of locomotive type can improve the 

outcomes by selecting only similar locomotives for the analysis. Currently available 

datasets demonstrated a slightly increasing trend over time for metrics such as crest 

factor, but it is yet to be validated with more data. The cause of the trend change 

observed in dataset II is unknown. It might be helpful to log all the events that can 

affect the accelerometer measurements. 
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More data combined with additional information about track operation, changes in 

track mode, maintenance or weather will allow the development of more detailed 

models. The data-driven approach in S&C condition evaluation benefits from large 

amounts of data collected by automatic systems. Models can be calibrated in real-time 

and used for the estimation of parameters such as RUL or maintenance planning. 

This paper defined several metrics based on specifics of train passage dynamics 

through S&C and introduced their utilization for trend analysis and fault detection. 

The current effort focuses primarily on acquiring high-quality data that contain 

additional information such as train type, speed, structure condition, weather or 

maintenance. This database will allow to develop and validate specialized machine 

learning models and evaluate the suitability of different approaches for application 

within the S&C condition monitoring system. 
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