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Abstract 
 

This paper concerns with multi-time step methods, also called subcycling, in lattice 

discrete particle models which can be used in numerical simulation of concrete, 

polymers and many other materials. Domain solved is split into two parts, where 

different time steps are used in order to save computational time. 
 

Keywords: multi-time step methods, lattice discrete particle model. 
 

1  Introduction 
 

Failure behaviour of concrete is a highly complex phenomenon, and different material 

models have been developed. There are many constitutive models based on concepts 

of plasticity, fracture mechanics, damage mechanics, or combinations of them. In the 

paper, we limit our attention to Lattice discrete particle models (LDPM), an alternative 

to standard finite element models. 

 

LDP models of concrete are based on the mesoscale level, where the size distribution 

of aggregates is utilized. In reference [1] and [2], an LDPM is formulated in the 

framework of discrete models for which the unknown displacement field is not 

continuous but only defined at a finite number of points representing the centre of 

aggregate particles. 

 

LDP models are tightly connected with nonlinear dynamic problems, and an explicit 

time integration scheme is typically used. It is well known [3] that time increments in 
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explicit methods have to satisfy stability conditions that are affected by element size 

and material parameters on particular finite elements. 

 

Failure zone in concrete can be localized into a relatively small area in comparison 

with the whole domain and very different time increments can be used in different 

parts of the domain solved. For decades, the idea of at least two different time steps 

in a problem has been known [3,4,5] and is denoted as a subcycling or multi-time step 

method. It can significantly reduce computational time. 

 

In LDP models, evaluation of the internal forces is very demanding in comparison 

with the majority of continuum models, and the stiffness matrix is not explicitly 

available. Therefore, many algorithms in literature have to be at least rewritten 

because many of them are based on an explicitly assembled stiffness matrix. 
 

2  Methods 
 

There are the following main steps in LDPM: (a) generation of particle sizes and 

positions, interparticle connection and definition of potential material failure positions 

(facets); (b) discrete compatibility conditions and equilibrium conditions have to be 

assembled; (c) constitutive law has to be defined, and the vector of internal forces has 

to be evaluated whenever required. 

 

Because the evaluation of the vector of internal forces is relatively computationally 

demanding, any reduction of the number of time steps decreases the computational 

time. Time integration with subcycling is very often described for linear problems 

where several simplifications can be used. LDP models of concrete failure are 

nonlinear in the whole range of loading and unloading. 

 

The subcycling is based on the standard finite difference method. Nodes are split into 

two groups. Group S contains nodes, where the short time step Δt is used and group 

L contains the nodes, where the long time step mΔt is prescribed, where m is the ratio 

between long and short time steps. In this contribution, m is assumed to be an integer. 

All vectors and matrices can be decomposed into blocks with respect to the nodal 

partitioning. The superscript S denotes the blocks connected to DOFs of the S group 

while L denotes the DOFs connected to the L group. In the group L, quantities are 

expressed at time kmΔt and one subscript k is used. In the group S, quantities are 

expressed at time kmΔt + j Δt and therefore, two subscripts k and j are used. 

 

𝑎𝑘 =
1

Δ𝑡
(𝑑𝑘−1 − 2𝑑𝑘 + 𝑑𝑘+1) 

where d denotes the vector of nodal displacement. New displacements in the whole 

domain at time (k+1)mΔt is evaluated in the form 

𝑑𝑘+1 = (
1

𝑚2Δ𝑡2
𝑀)

−1

(𝑓𝑘
𝐸 − 𝑓𝑘

𝐼 +
1

𝑚2Δ𝑡2
𝑀(2𝑑𝑘 − 𝑑𝑘−1)) 

where M is the mass matrix, 𝑓𝑘
𝐸 is the vector of external (prescribed) forces and 𝑓𝑘

𝐼 is 

the vector of internal forces which depend on the displacement vector, 𝑑𝑘. The vector    



 

3 

 

𝑑𝑘+1
𝐿  is extracted from the 𝑑𝑘+1. In the group S, the time increment mΔt is split into 

m substeps and the displacement vectors at particular times have the form 

 

𝑑𝑘+1,𝑗
𝑆 = (

1

Δ𝑡2
𝑀𝑆)

−1

(𝑓𝑘,𝑗
𝐸,𝑆 − 𝑓𝑘,𝑗

𝐼,𝑆 +
1

Δ𝑡2
𝑀𝑆(2𝑑𝑘,𝑗

𝑆 − 𝑑𝑘,𝑗−1
𝑆 ) − (1 −

𝑗

𝑚
)𝑓𝑘

𝐼,𝐵

−
𝑗

𝑚
𝑓𝑘+1
𝐼,𝐵 ) 

where E denotes external, I denotes internal, S denotes the group S and B denotes 

interface between the group S and L. The vectors 𝑓𝑘
𝐼,𝐵

 and 𝑓𝑘+1
𝐼,𝐵

 are vectors of internal 

forces assembled from elements which contain the interface between the group S and 

L. It means, some element displacements are from the group L and some of them are 

from S. 

 

3  Results 
 

The subcycling algorithm was tested on a simple example based on bar elements, 

where initial displacements are prescribed. The benchmark was solved by the standard 

finite difference method and by the finite difference method with subcycling. Their 

comparison is depicted in Figure 1. 

Figure 1: Benchmark on bar elements. 
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The subcycling algorithm was also used in the analysis of a cube with the edge length 

2 mm modelled by LDPM with 47 facets. It is a very coarse model utilized only to 

test the implementation of the LDPM and the time integrator. More specifically, it 

involves only one central LDPM cell, and the remaining cells are on the boundary of 

the cube sample, where displacements are prescribed. 

 

Figure 2: Comparison of vertical displacement obtained from the standard finite 

difference method and by subcycling algorithm. 
 

4  Conclusions and Contributions 
 

In this contribution, the finite difference method with the subcycling was used for the 

time integration of lattice discrete particle models intended to describe the failure of 

concrete. Evaluation of the internal forces in the LDPM is very computationally 

demanding, and any reduction of the number of time increments is crucial. The finite 

difference method with subcycling was implemented into computer code SIFEL and 

some preliminary numerical tests were performed. Comparison of response obtained 

by the standard finite difference method and by the finite difference method with 

subcycling is satisfactory. In the future, optimization of the implementation is needed. 

Additional improvement of the time integration can be achieved by parallelization of 

the subcycling.  
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