
1 

 

Abstract 
 

During the manufacturing process of train wheels, industries encounter limitations to 

study the fatigue cracking problem with the finite element method (FEM). Another 

method, the discrete element method (DEM), is more adapted to study these types of 

problems, but it is very expensive. 

This paper shows a strategy to switch from an initially purely FEM computation to a 

combined FEM-DEM computation. This switching made it possible to take advantage 

of both methods. To achieve this strategy, a coupling method and a field transfer 

method between FEM and DEM have been developed. To validate these methods, 

numerical test cases are carried out. 
 

Keywords: discrete element method, finite element method, coupling, fields transfer, 

crack, fatigue, train wheels. 
 

1  Introduction 
 

The fatigue cracking in forming tools during the manufacturing process of train 

wheels is a concern in the industry. The numerical simulations should be used to avoid 

cracks too severe to manufacture good quality wheels. The finite element method 

(FEM) is extensively used in industrial computational services. However, FEM 

suffers from limitations for crack propagation problems. Indeed, different mesh sizes 

are involved in such problems, and the mesh size is often particularly small in the 

vicinity of the crack tip. Moreover, the fields are singular in this area which is in 
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contradiction with the continuum mechanics framework. In fact, FEM discretizes the 

topology of the discontinuity with the mesh, i.e., the mesh follows the geometrical 

discontinuity. Other methods such as the eXtended Finite Element Method, or the 

Cohesive Zone Model suffer from multiple difficulties, such as considering multi-

cracks, crack deviations and closure. Unlike FEM, the discrete element method 

(DEM) is widely used to model cracked media such as raw materials or granular 

materials such as concrete, but this method is very expensive. In order to take 

advantage of both the FEM and the DEM, some authors developed coupling methods, 

generally overlapping, to decrease computation times while benefiting from DEM 

accuracy in crack regions. 
 

The aim – to enhance cost-effectiveness – is to propose a strategy to switch from 

an initially purely FEM computation to a combined FEM-DEM computation, with 

DEM employed only when and where required. It involves the non-overlapping 

coupling of FEM and DEM via Lagrange multipliers, the transfer of FEM fields to 

DEM, and dynamic modifications of the computational domain. 
 

The short paper is organized as follows. In the first part, the FEM and DEM 

discretizations, the coupling by Lagrange multipliers and the field transfer method are 

briefly presented. In the second part, some test cases are proposed to validate the steps 

of the implemented strategy. 
 

2  Methods 
 

2.1 FEM and DEM discretizations 
 

The finite element method is based on a discrete mathematical algorithm allowing to 

find an approximate solution of a set of partial differential equation on a continuous 

compact domain. Within the element, the value of a function is determined using a 

polynomial interpolation of the values at the nodes [1]: 
 

𝑓(𝑥, 𝑦, 𝑧) ≃ ∑  

𝑛

𝑖=1

N𝑖(𝑥, 𝑦, 𝑧) ⋅ 𝑓𝑖 (1) 

 

                         𝑓: unknown function; N𝑖:shape function on nodes i; 𝑓𝑖 value of  𝑓 on nodes i. 
 

The discrete element method (DEM) make it possible to simulate a set of solids in 

interaction in a discontinuous domain [2]. There are several forms to define the 

interaction between the discrete elements (contact laws, spring or beam). In this study, 

the interaction is controlled by beams of Euler-Bernoulli type (figure 1). 
 

 
 

Figure 1: Cohesive beam bond configuration [3] 
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The beam shape is chosen cylindrical. So, the geometry is described with only two 

parameters: the length 𝐿𝜇 and radius 𝑟𝜇. Two mechanical parameters are also 

associated: Young's modulus 𝐸𝜇 and Poisson's ratio 𝑣𝜇 [3].  
 

2.2 Non-overlapping coupling by Lagrange multipliers 
 

A large number of coupling methodologies have been developed in recent years. 

These methodologies are classified into two main families "overlapping coupling" 

[4]–[6] and "non-overlapping coupling"[7]–[10]. 

The comparison criteria are the computing time [11] and the accuracy of the solution. 

Here, the idea is to use a non-overlapping FEM-DEM coupling by Lagrange 

multipliers for cost-efficiency. 
 

In the chosen method, the interaction forces between coupled sub-domains are 

determined based on the action/reaction principle and the constrained dynamic 

equilibrium reads: 
 

𝑀𝑎 = 𝑓𝑖𝑛𝑡 − 𝑓𝑒𝑥𝑡 + 𝐶𝑇𝜆 (2)        

𝑀: Weight tensor; 𝑎: acceleration; 𝑓𝑖𝑛𝑡:internal forces; 𝑓𝑒𝑥𝑡:external forces; 𝐶:Coupling matrix; 𝜆: 
Lagrange multiplier 
 

2.3 Field Transfer  
 

When switching from FE to DE it is necessary to transfer the fields FE to fields DE. 

Some evaluations performed on the type of quantity transferred (strain, stress and 

displacements), has shown that the transfer of displacement was sufficient. 
 

The displacement field transfer is made using the FE polynomial interpolation. 

Indeed, the DE unknown displacements can be obtained based on the interpolation 

functions of the FE and the known nodal displacements. For example, for a Q4 FE 

containing a DE located in x: 

 

Figure 2: Transfer principle. 
 

𝑢(𝑥) = 𝑁1(𝑥)𝑢(𝑥1) + 𝑁2(𝑥)𝑢(𝑥2) + 𝑁3(𝑥)𝑢(𝑥3) + 𝑁4(𝑥)𝑢(𝑥4) (3) 
 

𝑢(𝑥): unkown displacement; N𝑖:shape function on nodes i;𝑢(𝑥𝑖) value of  𝑢(𝑥) on nodes i. 
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3  Results 
 

3.1 Initially coupled FEM-DEM computation 
 

A first evaluation concerned the necessity to couple only translational degrees of 

freedom or both translational and rotational degrees of freedom at the FEM/DEM 

interfaces. The studied structure is a linear elastic bending beam, built using two finite 

element sub-domains initially coupled to a discrete sub-domain (figure 3), clamped at 

the left end and loaded at the right end. 
 

To study the rotation, it is interesting to compare the section rotation in the coupling 

zone, with the reference results (full beam discretized with FEM only). To simplify 

the problem, in the case of small perturbations hypothesis, the relation between the 

deflection 𝑦 and the section rotation 𝜃 is: 

𝜃 =
𝑑𝑦

𝑑𝑥
 (4) 

 

 
 

Figure 3: Coupled FEM/DEM model. 

 
 

Figure 4: Section rotation comparison for pure FEM and for FEM/DEM coupled 

model. 
 

The figure 4 shows that in case of small perturbation, the coupling of rotations is 

not absolutely necessary in a first step. The results are close between the reference 

and the coupled model. Indeed, the coupled model is 7% away from the reference at 

most. The evaluation of field transfer during the computation can thus be performed. 

More accurate coupling strategies will be developed later. 
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3.2 Initially not coupled, then field transfer switching from FEM to DEM during 

computation 
 

After checking the influence of the rotation, the next step is to validate the transfer of 

the fields. The same bending problem as in the previous paragraph (figure 3) is 

studied, but this time with a field transfer model from a FEM sub-domain to a DEM 

one. 
 

The beam is subjected to a linear ramp loading. The transfer is performed when the 

simulation reaches half of the loading as presented in figure 5. 
 

 
Figure 5: Loading ramp. 

 
 

Figure 6: Deflections results for FEM and model with transfer. 
 

For this test case, we are interested in comparing the deflection between the 

configuration which follows a transfer cycle and a reference solution: a FEM model 

without transfer during the simulation. The results are presented in figure 6. 
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The results are close between the reference and the model with transfer. The error 

is quite low of the order of 2%. It shows that although the method employed is 

pragmatic, the error is kept reasonable. 
 

4  Conclusions and Contributions 
 

This short paper proposes a strategy to substitute FEM sub-domains by DEM ones 

during the computation, in order to evaluate failure propagation, while still being as 

much as possible cost-effective. Pragmatic choices have been made initially, and the 

errors are considered reasonable, while more accurate developments could be 

performed for each step if required. These steps are: 

- The non-overlapping coupling of FEM-DEM translational degrees of freedom 

using Lagrange multipliers, 

- The transfer of translational displacements from FEM to DEM during the 

computation by means of FE interpolation functions 

- Criterion-based automatization of the sub-domain substitution 
 

The next step concerns the crack propagation evaluation in a bending V notched 

beam initially purely discretized with FEM (figure 7). As much as possible, the 

numerical results will be compared to experimental ones. 
 

 
 

Figure 7: Three-point bending test case model. 
 

Some of the prospects concern the application of the strategy to industrial test cases 

specifically, cases that are related with the cracking of the train wheel, and other future 

work will deal with the study of the mathematical treatments of spurious waves. 
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