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Abstract 
 

A two-dimensional elasticity-based analytical solution is presented for accurate stress 

analysis of arbitrarily-supported isotropic beams subject to patch loads. The 2D elasticity-

based system of governing equations is formulated in mixed form by employing the Reissner-

type variational principle and solved analytically for arbitrary boundary conditions by 

employing a multi-term extended Kantorovich (EKM) approach. The correctness and 

efficacy of the present mechanical model are established by comparing its results with finite 

element analysis solutions. It is shown that the analytical formulation is capable of capturing 

the displacement and highly localized stress concentration profile arising from patch loads 

both in thin and thick geometric configurations, outperforming classical laminate theory 

predictions. 
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1 Introduction 

Metallic beams are essential structural components that are widely used in engineering 

practice. The computation analysis of their structural response requires dedicated, accurate 

models. In recent years, many mathematical models have been developed for static, vibration, 

and buckling investigation of beams [1–3]. In the context of stress analysis of laminated 

beams, Lekhnitskii [4] introduced Airy-stress polynomial functions for exact elasticity 

analysis of beams. Using these Airy stress polynomial functions approach, Silverman [5], 

Hasin [6], Gerstner [7], Rao and Ghosh [8] and Cheng et al. [9] developed exact solutions for 

laminated beams. An elasticity-based analytical solution for the bending analysis of beam 

structures is developed by Esendemir et al. [10]. 

In the elasticity framework, the development of the analytical solution for arbitrary 

boundary conditions is very challenging due to computational difficulties and the complexity 
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of laminated systems. Therefore, many researchers also explored pure numerical approaches 

for beams [3]. Elasticity based semi-analytical solution was developed by Chen et al. [11] for 

flexural and natural frequency analysis of the laminated beams using the differential 

quadrature method (DQM). Recently, Subramanian and Mulay [12] extended Pagano’s 

theory for the flexural analysis of laminated beams. Trinh et al. [13] utilized the inverse 

differential quadrature method with zigzag theory and Doeva [14] employed a Variational 

Iteration Method (VIM) for the static analysis of laminated composite beams. 

The aforementioned analytical and numerical solutions are limited to uniformly distributed 

continuous loads. In the context of localized loading, Pagano [15] developed an exact solution 

for simply-supported laminates under cylindrical bending and subjected to concentrated and 

distributed loads. Later, Kapuria et al. [16] assessed the zigzag theory under plane-stress 

conditions for simply-supported composite beam subjected to static patch load. To the 

author’s best knowledge, no analytical solution has been reported in the literature for 

arbitrarily supported beams subjected to patch loads. However, discontinuous loads are 

highly common in practice. As a result, the capability of the mechanical analysis models to 

accurately and rigorously assess the internal stress state of such structural components to 

general types of loading and support conditions is of primal importance. 

In this article, we aim at proposing an accurate 2D analytical solution for the static analysis 

of arbitrarily supported isotropic beams subjected to locally distributed loads for the first time. 

To that scope, we extend the Kantorovich method in the discrete loading analysis space. 

2 2D elasticity-based formulation for isotropic beams 

A single-layer isotropic beam (x = (0, a), z = −h/2, h/2), as presented in Figure 1, is 

considered for the present study. Here. ( ) / 2 /z h t = − is a non-dimensionalized thickness 

 

 
Figure 1: Geometry of the isotropic beam considered for the present study. 

 

parameter and t denotes the thickness of the beam. Similarly, the beam span is divided into 

segments with and without loading and )( )

1

(( ) /s s

s sx x l −= − is a non-dimensional axial 

parameter defined for each segment, with l(s)
 denoting the length of that segment. The 

superscript ‘s’ will be omitted in the further mathematical expressions unless specifically 

used for clarity. The parameter 1 = x/a is a global in-plane parameter. 

The linear strain-displacement relations for the 2D straight beam can be written as,

, ;x xu =  , ,zx x zw u = + and ,z zw = . The elasticity-based constitutive equations for the 
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isotropic beam can be expressed as, 11 13x x zs s  = + ; 13 33z x zs s  = + ; 55zx zxs = . The 

elastic compliances
ijs  are given by, 11 33 1/s s E= = ; 55  1/S G= ; 13  /S E= − . Here, E, G 

and ν denote Young’s modulus, shear modulus and Poisson’s ratio of the isotropic beam, 

respectively. 

Using strain-displacement and constitutive equations, Reissner-type mixed variational 

principle for a isotropic beam without body force can be written as, 
 

             
11 13 13 33

55 , , , ,

,  ,

, ,    0
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x x z x z x z z
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s u w u w dV

     

       

+ − + + − +

− − + + + + =


           (1) 

 

It is assumed that the top surface and bottom surface of the beam are shear tractions free (

0zx = ) and the beam is subject to a uniform distributed patch load 2p at the top surface. The 

displacements (u , w) and transverse stresses ( ,z zx  ) at the segment interfaces need to satisfy 

the following condition at the inter-segment interface 
 

 
( ) ( )1

1 0
[ [,  ,  ,   ,  ,  ( ) | ] ( ) |,  ]s s

s s

x zx x zxu w u w
 

   
= =

+
=  (2) 

 

Along x-axis isotropic beam can have any type of support such as, Simply-supported: x = w 

= 0; Clamped: u = w = 0; and Free:  0x xz = = . 

 

3 EKM analytical solution approach 

In the present mathematical model, both displacements (u, w) and stresses ( , ,x z zx   ) are 

considered as primary variables and solved using the multi-term extended Kantorovich 

method [17,18]. The field variables for a segment can be expressed as follows: 
 

1 1 2 2 3 3 4 4 5 5

1

[                           ] [   [ ]     ]
n

T i i i i i i i i s s i i T

x z zx a d

i

u f f fw g g g g p zp gf f  
=

= + +                     (3) 

 

where fl and gl are unknown functions of ξ and ζ for the x and z-direction, respectively, and

2 / 2s s

ap p= − and 
2 /s s

dp p h= − . The functions ( )i

lf  depend on the sth segment while the

( )i

lg  functions are valid for all segments. 

 

3.1 First iterative step - solving functions ( )i

lg   

In this iteration step, the thickness function ( )i

lg  will be solved and obtained in closed-

form. Hence, variation can be expressed as follows: 
 

1 1 2 2 3 3 4 4 5 5

1

               [          ] [         ]
n

T i i i i i i i i i i T

x z zx

i

u w g g g gf f f f f g           
=

=                    (4) 

 

The functions ( )i

lg  can be divided into two parts as G  and Ĝ . Here G  is a column vector 

of dimension 4n and contains independent variables that appear in the boundary conditions 

of the top and bottom surfaces of the beam, while Ĝ is a column vector of size 1n and contains 
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the remaining dependent variables. Considering the solution Equation (3), and its variational 

part Equation (4) and substituting into Equation (2), integration by parts along the x-axis can 

be performed. Since the variation is arbitrary, the coefficient of i

lg must vanish, which yields 

the following set of governing equations for G and Ĝ , as follows: 
 

,
ˆ ˆ



−  
 

= + +1

pG M AG AG Q  (5) 

ˆ  
−
     = +

1
m

pG K AG Q  (6) 

Here, ˆ, , , ,M A A K and A , are coefficient matrices. The substitution of Ĝ from Equation (6) 

into Equation (5) transforms Equation (5) as follows: 
 

 
, = +

p
G AG Q  (7) 

 

where Equation (7) is a set of 4n first-order coupled ODEs with constant coefficients and this 

system of ODEs can be solved analytically by following the solution approach suggested by 

Kapuria and Kumari [19]. 

 

3.2 Second iterative step - solving functions ( )i

lf 
1

 

In first iterative step ( )i

lg  functions have been obtained in closed-form manners. Now, 

in this iteration step, the obtained ( )i

lg  functions are used to identify the i

lf functions, 

which are assumed as unknown in this iteration. Therefore, variation is assumed in the i

lf

functions as follows: 
 

1 1 2 2 3 3 4 4 5 5

1

               [          ] [         ]
n

T i i i i i i i i i i T

x z zx

i

f f f fu w g g g fg g           
=

=                     (8) 

 

Similar to the first iteration, the in-plane functions fl
i(ξ) can also be split up into two 

column vectors F and F̂ . Here, F contains these specific independent variables that appear 

in the inter-segment continuity and edge conditions along the x-directions and the F̂ column 

vector contains the remaining dependent variables. Substituting Equation (8) in Equation (2) 

and equating the coefficient of i

lf to zero individually after performing integration along the 

z-direction leads to a set of differential-algebraic equations as follows: 
 

 ,
ˆ ˆ



−  
 

= + +1 f f f

mF N B F B F P  (9) 

 ˆ −  
 = +1 f f

mF L B F P  (10) 

 

However, ( )i

lg  are already known in closed-form manners from the previous iteration. 

Hence above set of equations can be solved similarly by applying the edge conditions and 

intersegment continuity conditions along the x-direction on the F . These two iterative steps 

can be continued to get the final converged solution up to the needed level of accuracy. 
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4 Numerical results and discussion 

In this section, the effect of localized loading on the flexural response of isotropic beams 

is investigated. A single-layer aluminum (E=70Gpa, ν=0.3) beam, as shown in Figure 1, is 

considered for the current numerical study. Numerical results are presented for various 

boundary conditions and thickness ratios (S = a/h). The obtained results are expressed in non-

dimensional form, normalized as follows 

( ) ( ) ( ) ( )3 2

0 0 0,   100 , / / ;  ,    ,  /x zx x zxu w u w S E p hS S p S   = =    with E0 = 70GPa. 

To explore the longitudinal distribution of deflections and stresses under localized patch 

loads, the variation of deflections and stresses are depicted in Figure 2 for an isotropic beam 

subject to a locally distributed patch load of length 0.1a at its center. The numerical results 

 

 
Figure 2: Longitudinal variations of displacements and stresses under S-S and C-C 

boundary conditions for thick (S=5) isotropic beam subjected to the locally distributed 

patch load of length 0.1a at center. 
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are plotted for clamped–simply supported (C-S) and clamped–clamped supported (C-C) end 

conditions. For validation purposes, 2D FE results are also depicted in Figure 2, along with 

the present analytical results.  Excellent agreement is observed between the two solutions. It 

is noted that the locally distributed load leads to very high localized normal stress 

concentration in the vicinity of the applied load, while the stress concentration at the bottom 

of the beam is significantly lower compared to the top. It is also observed that in the vicinity 

of the localized distributed load, the transverse stress ( zx ) changes from negative to positive 

in a sharp manner. The present analytical solution can predict the sharp variation of axial and 

transverse stresses in the vicinity of localized load accurately and efficiently. Moreover, the 

variation of deflections is smooth along the length of the beam as compared to stresses. 

Further insights in the stress distribution of the beam upon the application of highly 

concentrated patch loads are presented in 2D contour form in Figures 3 

 
Figure 3: Variation of normal stress x and shear stress zx for C–C isotropic beam with 

different thickness ratios, S = 5, 10, and 20 subjected to a patch load of length 0.1l at center. 

 

for the x and zx stress fields in the C–C case. The variation of normal stresses x is highly 

localized in the thick beam. In the thick (S =5) and moderately thick (S =10) case, high-stress 

concentration appear at the top surface in the vicinity of the localized load, and the 

distribution of normal and shear stresses is highly asymmetric across the thickness. However, 

for a thin (S =20) geometry, the stress distribution is highly distributed, smooth, and 

symmetric, as it would be predicted with the use of classical beam theories. 

 

5 Conclusions 

A two-dimensional analytical solution has been developed for the accurate stress analysis 

of arbitrarily-supported isotropic beams subject to distributed patch loads. The Reissner-type 

mixed variational principle-based formulation has been developed in mixed form. The 

extended Kantorovich method has been employed to obtain the analytical solution for 

arbitrary support conditions. An extensive numerical study has been performed to assess the 
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effect of patch loads on the flexural behavior of isotropic beams. It has been found that the 

present model can efficiently and accurately capture the flexural response under patch 

loading. The highly localized stress concentration in the vicinity of the applied load are 

accurately computed, along with their variation in the vicinity of the patch load, which is 

highly asymmetric and nonlinear along the beam thickness. The analytical results provided 

in this paper are expected to serve as a benchmark for the general-case, analytical evaluation 

of the static bending response of beams-structures subject to discontinuous loads, beyond the 

applicability limits of classical laminate theories. 
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