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Abstract 
 

Hybrid simulation is a cost-effective method of testing structures under seismic 

loading that combines numerical and experimental methods through partitioning the 

structure into; 1) numerical substructure simulating the well-understood components 

of the structure, and 2) physical substructure representing the critical components of 

the structure. The hybrid simulation results can become biased and uncertain when 

only one or a limited number of potential critical components, e.g., seismic fuses, are 

physically tested due to laboratory or cost constraints. Furthermore, the critical 

components modelled in the numerical substructure are often calibrated using 

experimental test results of similar prototype specimens under a predefined loading 

protocol, which fails to consider the effects of dynamic loading characteristics to 

which it will be subjected in hybrid simulation. This paper proposes a new recursive 

model updating algorithm incorporated into the conventional seismic hybrid 

simulation framework to leverage the data collected in real-time from the physical 

specimen of one of the critical elements and integrate a new data-driven model into 

the numerical substructure. The data-driven model, which is being progressively 

updated owing to the proposed model updating algorithm, is responsible for predicting 

the nonlinear cyclic response of the other critical components of the system that are 

not physically tested. To develop the data-driven model, the parameters of the Prandtl-

Ishlinskii model are first estimated using a sparse regression algorithm and then 

updated during the hybrid simulation using the recursive least-squares algorithm. The 

simulation accuracy of the model updating algorithm is assessed through nonlinear 

response history analysis of a two-storey steel buckling-restrained braced frame, 

which consists of a virtual experimental specimen (first-storey brace) and the model 
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updating algorithm integrated into the numerical model of the structure to predict the 

second-storey brace force. The results suggest that the application of the model 

updating algorithm in conventional seismic hybrid simulation yields a more accurate 

and create an unbiased seismic simulation tool that can be used to examine the seismic 

response of multi-storey structural systems. 

 

Keywords: hybrid simulation, model updating, data-driven simulation, machine 

learning, dynamics of structures, substructuring, system identification. 

 

1  Introduction 
 

Hybrid simulation (HS) is a mixed numerical simulation - physical testing method of 

structural response assessment, which was first introduced by Koichi Takanashi et al. 

[1] in the early 1970s. The underlying idea of HS is to divide the structure into two 

computationally parallel substructures. The well-understood parts of the structure are 

simulated numerically using a finite element analysis program while the critical 

components expected to respond in the inelastic range or experience instability, e.g., 

seismic fuses in a seismic force-resisting system, are tested physically in the 

laboratory. 

The results obtained from seismic HS may become biased when only one or a 

limited number of potential critical components are physically tested due to laboratory 

or financial constraints. For example, Imanpour et al. [2] physically tested only one 

of the two critical columns of a two-tiered steel concentrically braced frame using the 

pseudo-dynamic HS technique, while both columns would have buckled if they had 

been tested experimentally in the laboratory, which may have resulted in a distinctly 

different structural response. In addition, the critical components modelled in the 

numerical substructure of the conventional HS technique are often calibrated using 

experimental test results of similar prototype specimens under a predefined loading 

protocol, which fails to consider the effects of dynamic loading characteristics during 

hybrid simulation. 

Recently, the model updating concept was successfully implemented into HS to 

leverage the wealth of real-time data collected from the physical specimen during HS 

towards improving the accuracy of the numerical substructure. The majority of these 

studies have employed Kalman filter-based system identification techniques to update 

the parameters of a phenomenological hysteresis model in real-time [3]–[7]. 

A new model updating algorithm is proposed in this study for the seismic HS of 

structural systems having multiple critical elements, which benefits from an adaptive 

data-driven model that predicts the hysteretic response of similar – but not identical – 

critical elements. The developed algorithm functions in two steps: 1) the least absolute 

shrinkage and selection operator (LASSO) algorithm is utilized to obtain a 

computationally-efficient and reduced-order Prandtl-Ishlinskii (PI) model in the 

initial (passive) training phase. This phase is triggered before HS to estimate the 

response of the data-driven model of the critical component based on available 

experimental test data; 2) the new incoming (experimental test) data as obtained from 
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the physical specimen is fed into the recursive least-squares (RLS) algorithm during 

HS to progressively improve the prediction of hysteretic response, particularly the 

hardening behaviour affected by the real-time dynamic loading protocol, as HS 

progresses. This phase is referred to as the recursive model updating (RMU). 

 

2  Methods 
 

The data-driven model used for simulating the hysteretic response of the critical 

components modelled in the numerical substructure is developed based on the Prandtl-

Ishlinskii (PI) hysteresis model [8]. In principle, the PI model constructs the hysteresis 

memory of the model updating algorithm by expanding the input deformation signal, 

x(t), into a higher dimensional space to convert hysteretic nonlinearity into a unique 

one-to-one mapping problem by means of stop operators, Er[.]. Stop operator 

produces an elastic-perfectly plastic hysteretic response and can be expressed 

mathematically as: 

 𝑦𝑟(0) = 𝑒𝑟(𝑥(0)) (1) 

 𝑦𝑟(𝑡) = 𝑒𝑟(𝑥(𝑡) − 𝑥(𝑡𝑖) + 𝑦𝑟(𝑡𝑖))  for  𝑡𝑖 < 𝑡 ≤ 𝑡𝑖+1;   0 ≤ 𝑖 ≤ 𝑁 − 1 (2) 

 𝑒𝑟(𝑠) = min (𝑟, max(−𝑟, 𝑠)) (3) 

in which yr(t) = Er[x(t)] is the output signal of a single stop operator, which is defined 

using a threshold 𝑟 (𝑟 > 0). The relationship between the input deformation signal, 

x(t), and the restoring force signal, y(t), can be expressed by the linear superposition 

of multiple stop operators as: 

 𝒚𝒏×𝟏 = 𝚯𝐧×𝐦. 𝚵𝐦×𝟏 = [

𝐸𝑟1
[𝑥(𝑡1)] ⋯ 𝐸𝑟𝑚

[𝑥(𝑡1)]

⋮ ⋱ ⋮
𝐸𝑟1

[𝑥(𝑡𝑛)] ⋯ 𝐸𝑟𝑚
[𝑥(𝑡𝑛)]

]

𝒏×𝒎

. [
𝜉1

⋮
𝜉𝑚

]

𝒎×𝟏

 (4) 

in which n and m are the number of training data points and stop operators, 

respectively. The thresholds can be assumed to be ri = i/(m + 1)|x|max, i = 1, 2, ...,m, 

where |x|max is the maximum input signal amplitude. 𝚯 is called the library matrix 

which stacks the stop operators in multiple columns of the matrix, and 𝜩 =
[𝜉1, 𝜉2, … , 𝜉𝑚]T contains the weights associated with each stop operator that is 

obtained by minimizing the L1-regularized mean squared error (MSE) using the 

LASSO [9] regression algorithm as given: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
1

2𝑛
‖𝒚 − 𝐲′‖2

2 + 𝜆‖𝜩‖1 (5) 

where 𝜆 denotes the regularization parameter that controls the sparsity of the solution, 

which is obtained using the Akaike Information Criterion (AIC) [10], and y’ is the 

restoring force vector obtained from the experimental data. 
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The recursive model updating (RMU) phase utilizes incoming experimental test 

output comprised of specimen’s strain data, xk, and stress data, yk, in the kth step of the 

analysis to update the weight matrix, 𝚵, recursively: 

 𝜩𝑘 = 𝜩𝑘−1 + 𝑲𝑘[𝑦𝑘 − 𝜣(𝑥𝑘)𝜩𝑘−1] (6) 

in which the estimated parameters of the previous step, 𝜩𝑘−1, are updated by a 

corrective term based on the difference between the most recent stress measurement, 

yk, and the anticipated value of the stress obtained from the previous step, 𝜣(𝑥𝑘)𝜩𝑘−1. 

The corrective term is weighted by a gain matrix, Kk, that is obtained using: 

 𝑷𝑘 = (𝑰 − 𝑲𝑘𝜣(𝑥𝑘))𝑷𝑘−1(𝑰 − 𝑲𝑘𝜣(𝑥𝑘))
𝑇

+ 𝑲𝑘𝑹𝑘𝑲𝑘
𝑇 (7) 

 𝑲𝑘 = 𝑷𝑘−1𝜣(𝑥𝑘)𝑇(𝜣(𝑥𝑘)𝑷𝑘−1𝜣(𝑥𝑘)𝑇 + 𝑹𝑘)−1 (8) 

where Pk is the estimation-error’s covariance matrix computed using Eq. (7), and Rk 

is the covariance of the measurement noise, which is taken as a white noise with 

variance of 1. 

 

3  Results 

The effectiveness of the recursive model updating algorithm proposed was verified 

through a virtual hybrid simulation (VHS) in which three numerical analysis programs 

were coupled together to evaluate the seismic response of a two-storey buckling-

restrained braced frame (BRBF) as shown in Figure 1a. The prototype frame consisted 

of a Ductile (Type D) BRBF located in Vancouver, British Columbia, Canada, on site 

Class C. Gravity and seismic loadings were calculated in accordance with the 2015 

National Building Code (NBC) of Canada [11] and the structural design of the BRBF 

was performed based on Canadian steel design standard CSA S16 [12]. Refer to [13], 

[14] for details of the BRBF design. 

In the VHS with RMU (Figure 1b) well-understood elements of the structure 

including beams and columns were simulated in OpenSees [15],  while, the first storey 

buckling-restrained brace (BRB), as one of the critical components, was modelled in 

ABAQUS [16], and the model updating algorithm was implemented in MATLAB 

[17] to predict the restoring force of the second-storey BRB. The reference VHS 

(Figure 1a) included BRBs modelled in ABAQUS and the rest of the BRBF in 

OpenSees. The communication between these software packages to send and receive 

deformation and force commands was established using the UT-SIM platform [18], 

[19]. All beams and columns were modelled using elastic beam-column elements [20] 

in OpenSees. The detailed model of the BRB in ABAQUS was constructed using the 

Voce-Chaboche multiaxial plasticity material model [21], [22] with combined 

isotropic-kinematic hardening parameters. 
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Figure 1. Virtual hybrid simulation of buckling-restrained braced frames: (a) 

reference VHS model, (b) VHS model equipped with recursive model updating (RMU) 

algorithm 

 

 The LASSO regression was performed to find the weight matrix of the PI model, 

𝜩𝑳𝑨𝑺𝑺𝑶, using fictitious test data which was created using the pushover analysis 

conducted on an isolated BRB under an increasing cyclic displacement protocol 

shown in Figure 2a.  

The result of the initial training is shown in Figure 2b, which suggests that the 

LASSO regression successfully captured the nonlinear cyclic behaviour of the BRB 

with normalized root-mean-square-error (NRMSE) of 0.40%. The RLS algorithm was 

then activated to perform VHS of BRBF under the 1995 Kobe, Japan–Tadoka station 

earthquake. The history of BRBF storey drift ratios and the hysteretic response of the 

BRBs at both storeys are shown in Figure 3 as compared to their counterparts from 

reference VHS. The NRMSE of Storey 2 BRB hysteretic response was 2.12%, which 

confirms the accuracy of the RLS algorithm in predicting the response of the data-

driven BRB in Storey 2 using the real-time data obtained from the numerical BRB in 

Storey 1. 
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Figure 2. Initial Training of the data-driven model, (a) Input displacement protocol, 

(b) Training data generated by a pushover analysis of an isolated BRB vs. predicted 

data 

 

Figure 3. Virtual hybrid simulation of the BRBF under 1995 Kobe, Japan–Tadoka 

station earthquake, (a) history of drift ratio in Storey 2, (b) history of drift ratio in 

Storey 1, (c) Storey 1 BRB response, (d) Storey 2 BRB Response 
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4  Conclusions and Contributions 
 

A novel recursive model updating algorithm was proposed for multi-element HS of 

structural systems under earthquake loading. This algorithm was developed by 

incorporating the PI model to reproduce nonlinear hysteretic response, LASSO 

algorithm for initial training, and RLS algorithm to recursively update the data-driven 

model that predicts the restoring force of numerical critical components similar – but 

not identical – to the critical component physically tested. 

 The proposed RMU algorithm can efficiently alleviate the uncertainties associated 

with the numerical simulation of the critical elements of structures in conventional HS 

of multi-storey seismic force-resisting systems. Furthermore, the proposed algorithm 

or real-time training technique can improve the prediction of the hysteretic response 

of the data-driven model in the nonlinear range of the material, e.g., improved cyclic 

hardening, because the amplitude, frequency and duration of real-time dynamic 

loading, e.g., earthquake accelerations, are explicitly accounted for in the simulation 

of the data-driven model during HS. This feature of the proposed algorithm highlights 

the benefit of the HS powered by the RMU algorithm over the conventional HS 

technique where the numerically-modelled critical components are often calibrated 

against experimental test data of similar prototype specimens under a predefined 

loading protocol, which lacks taking into consideration the influence of dynamic 

loading characteristics during HS. 

This study verified the capability of the RMU algorithm and demonstrated its 

potential to overcome the limitations of seismic HS using pure numerical examples. 

Further verification of the proposed algorithm using small-scale and large-scale 

experimental test programs remains the subject of future studies. 
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