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Abstract 
 

The current paper proposes to use an improved response function (IRF) method for 

stochastic meshless analysis of a 2D beam wherein Young’s modulus is assumed to 

vary as a lognormal random field. The meshless tool used in the present study is the 

element-free Galerkin method. In IRF method, the total displacement response is 

evaluated in each simulation by adding a deterministic part and an IRF. This 

displacement decomposition combined with the stiffness modelling using the second 

order expansion of Taylor series is substituted in the stochastic system of equations to 

find the expressions for the deterministic solution and the IRF. The deterministic 

solution evaluation is possible outside the loop for simulation and the expression for 

IRF involves only simple algebraic operations to be carried out inside the simulation 

loop. A 2D beam with cantilever boundary conditions loaded at the free end with a 

parabolic traction is analysed and the response moments are determined using the IRF 

method proposed. The first two moments of response obtained are observed to be 

matching well with the MCS moments even at higher values of coefficient of 

variation. The IRF method proposed also produces the distributions of response 

comparable with the distributions evaluated using MCS. The difference in response 

moments evaluated using IRF method and the second order perturbation method is in 

the acceptable limit. The computational efficiency of the IRF method is evidently 

better compared to MCS. 
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1  Introduction 
 

The stochastic analysis considers the various system uncertainties for the analysis and 

design of structures [1] and demands the response moments and distributions. The 

time required is high since it involves the analysis of complex structural models. The 

most widely used stochastic finite element method (SFEM) [2] for the probabilistic 

structural analysis leads to random field to response mapping issues [3] pertaining to 

the inherent mesh dependency associated with the finite element method (FEM). 

Stochastic element-free Galerkin method (SEFGM) [3] is considered to replace SFEM 

since the element-free Galerkin method (EFGM) [4] is a commonly used meshless 

method and doesn’t involve highly structured meshes for interpolating the field 

variables.  

 

Monte Carlo simulation (MCS) [3], Perturbation techniques [3], Neumann 

expansion methods [5] etc. are some of the common stochastic methods used in 

SEFGM formulations. Even though it produces the complete probabilistic 

characteristics of response, use of MCS becomes cumbersome for the problems 

involving more field variables or random variables. Nonetheless, it is used as a tool 

for validation purpose in all the probabilistic studies. The perturbation and Neumann 

expansion methods produce the first two response moments with reasonable accuracy 

for input random fields with smaller coefficient of variation (CV) [3]. However, the 

probabilistic distributions of response cannot be evaluated using these methods.  

 

An improved response function (IRF) method in combination with EFGM [6] is 

based on the decomposition of response into deterministic and stochastic parts; the 

stochastic part is called as IRF. Taylor series is used for modelling the stiffness. This 

method is computationally more efficient and produces the statistical moments of 

response and probabilistic distributions comparable with MCS at higher CV values. 

However, the use of IRF method has been limited to symmetrically distributed input 

random field in this study. The probabilistic structural analysis using the IRF method 

with unsymmetric random field is not studied so far. The present study suggests an 

extension of the IRF method for a 2D beam analysis using EFGM when the Young’s 

modulus is unsymmetrically distributed; particularly lognormal. The results are 

validated using the MCS results. Second order perturbation (SOP) method is also used 

for comparing the results. 

 

 Stochastic meshless analysis formulations used in the present study are briefly 

discussed in the following section.   

 

2  An IRF based stochastic meshless formulation for 2D beams 
 

Young’s modulus (E(x)) in the present paper is assumed as a lognormally 

distributed homogeneous random field [7];  
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𝐸(𝒙) = 𝐶𝑙𝑒
(𝜂(𝒙)), 

           (1) 

where, 𝐶𝑙 =
µ𝐸

√1+𝐶𝑉2
 and 𝜂(𝒙) is a stochastic field having mean zero and an exponential 

autocovariance 𝛤𝜂 = log(1 + 𝜎𝜂
2) exp [− (

|𝛿𝑥|

𝜆𝑥
+

|𝛿𝑦|

𝜆𝑦
)]

 

. µ𝐸  and 𝜎𝐸 are the mean and 

the standard deviation of E(x); 𝐶𝑉 =
𝜎𝐸 

µ𝐸
= 𝜎𝜂 is the coefficient of variation of the 

input random field; 𝛿𝑥 and 𝛿𝑦 are the distances between the neighbourhood points in 

the X and Y directions. 𝜆𝑥 and 𝜆𝑦 are the correlation length parameters. The current 

study discretizes 𝜂(𝒙) utilizing the shape function method [8] that uses Moving least 

square [9] shape functions. The system of stochastic equations in EFGM [4,10] with 

stiffness 𝑲̅(𝜼) and displacement 𝒅̅(𝜼) is written as, 

 

𝑭̅ = 𝑲̅(𝜼)𝒅̅(𝜼). 

           (2) 

 

Direct simulations on the above equation (MCS) gives the complete probabilistic 

characteristics of response at the cost of computational time. Perturbation method on 

the other hand uses Taylor series expansion for both 𝑲̅(𝜼) and 𝒅̅(𝜼). It computes the 

mean and standard deviation of response in lesser time. Nonetheless, it cannot 

evaluate the response distributions. So, an IRF method [6] is proposed, which 

evaluates the response moments and the response distributions in a reasonable amount 

of time.  

 In IRF method, the total displacement response 𝒅̅(𝜼) is evaluated by adding the 

deterministic component (𝒅̅𝟎) and a stochastic component (𝒅̅𝑰𝑹𝑭(𝜼)) during each 

simulation. 𝑲̅(𝜼) is modelled using second order Taylor series. The modified system 

of stochastic equations can be written as,  

 

𝑭̅ = (𝑲̅𝟎 + 𝑲̅,𝑖𝜂𝑖 +
1

2
𝑲̅,𝑖𝑗𝜂𝑖𝜂𝑗) (𝒅̅𝟎 + 𝒅̅𝑰𝑹𝑭(𝜼)) 

           (3) 

from which 𝒅̅𝟎 and 𝒅̅𝑰𝑹𝑭(𝜼) are evaluated as 

𝒅̅𝟎 = 𝑲̅𝟎
−𝟏

𝑭̅,  

           (4) 

            𝒅̅𝑰𝑹𝑭(𝜼) = (𝑲̅𝟎 + 𝑲̅,𝑖𝜂𝑖 +
1

2
𝑲̅,𝑖𝑗𝜂𝑖𝜂𝑗)

−𝟏

(− (𝑲̅,𝑖𝜂𝑖 +
1

2
𝑲̅,𝑖𝑗𝜂𝑖𝜂𝑗) 𝒅̅𝟎).

   
        (5) 

( )𝟎, ( ),𝑖 =
𝜕( )

𝜕𝜂𝑖
 and ( ),𝑖𝑗 =

𝜕2( )

𝜕𝜂𝑖𝜕𝜂𝑗
 are the quantities calculated at the mean 

values of random variables. The response moments and distributions are computed 

using the basic probability theory [1] from the set of 𝒅̅(𝜼) calculated. In this method, 

a single time evaluation of 𝒅̅𝟎 is possible outside the loop for simulation.  𝒅̅𝑰𝑹𝑭(𝜼) can 

be computed easily inside the simulation loop, using simple algebraic operations on 
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the generated random variables and the stiffness derivatives which are random 

variable independent and are evaluated outside the loop. This reduces the 

computational time considerably compared to MCS, which needs construction of 

𝑲̅(𝜼) in (eqn (2)) at each Gauss point during each simulation. The accuracy in results 

is also guaranteed since the displacement approximation considers the cross 

dependency of random variables.  

 

 The next section deals with the numerical example of a 2D cantilever beam 

analysed using the proposed method.  

 

3  Numerical Example 
 

A 2D beam shown in Figure 1 is solved using the IRF based SEFGM. Poisson’s ratio 

is taken as 0.3 and µ𝐸  as 2 × 105 MPa. In EFGM analysis, a 2D linear basis, cubic 

spline weight function and a scaling parameter of 2 are used [4,11,12]. Meshless 

discretization uses 187 nodes; 54 background cells are used for numerical integration 

that employs four-point Gauss quadrature. Point A in Figure 1 is the reference point 

taken for further analysis.  

 

Figure 1: A 2D cantilever beam 0.6 m ×  0.15 m ×  0.001 m loaded at free end with 

a parabolic traction of 2000 N. 

 

 The stochastic analysis uses 12 number of random field discretization points. 𝜆𝑥 

and 𝜆𝑦 are fixed as 0.5; CV values range from 1% to 30%. Response moments using 

MCS, SOP and IRF methods vary with CV as shown in Figure 2. It is seen that IRF 

results are comparable with MCS even at higher CV values. The IRF results are also 

comparable with SOP results. 

 

Fixing CV and 𝜆𝑦 as 15% and 0.5, 𝜆𝑥 is varied from 0.25 to 1. The variations of 

response moments are plotted in Figure 3. The IRF results are comparable with MCS 

results independent of 𝜆𝑥 values. The probabilistic distributions of vertical deflection 

at point A using MCS and IRF methods are further potted in Figure 4 and a good 

agreement is evident. CV used here is 15% and 𝜆𝑥 and 𝜆𝑦 are 0.5.  

 

It is observed that the IRF method requires only 0.444 times the time required for 

executing MCS. This is because it calculates the deterministic solution only single 

time outside the simulation loop and computing IRF requires only simple algebraic 
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operations. Perturbation needs the least time; 5.45 ×  10−3 times the time needed for 

executing MCS, but it computes only the response moments and fails to produce the 

response distributions. 

 

Figure 2: Variations in the first two statistical moments of vertical deflection at point 

A with CV of the input random field. 

 

 
Figure 3: Variations in the first two statistical moments of vertical deflection at point 

A with correlation length parameter in X direction (𝜆𝑥). 

 

Figure 4: Probabilistic distributions of the vertical deflection at point A. 
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4  Conclusions  
 

Use of an IRF for the stochastic meshless analysis is proposed in the present study for 

a 2D beam analysis wherein a lognormally varying random Young’s modulus is 

assumed. In IRF method, the total displacement response during each simulation is 

evaluated by adding a deterministic part and an IRF. The second order expansion of 

Taylor series is employed for modelling the stiffness. A single time evaluation of the 

deterministic part is possible outside the loop for simulation. Evaluation of stochastic 

part or IRF needs performing simple algebraic operations during each simulation. The 

response moments and distributions are evaluated based on the simple probability 

theory from the complete set of total displacement responses obtained.  

 

The numerical example solved in the present study is a 2D beam with cantilever 

boundary conditions, loaded at the free end with a parabolic traction. The mean and 

standard deviation of response are evidently matching with the MCS values at higher 

CV values as well. The obtained results are also found comparable with the SOP 

results. The statistical moments of vertical deflection evaluated using different 

methods used in the present study are seen comparable independent of the correlation 

length parameters of the input lognormal random field. A good agreement in the 

probability distributions of vertical deflection computed from both MCS and IRF 

methods is also observed. The IRF method is computationally far efficient compared 

to MCS.  
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